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Abstract. In this article we consider the problem of the composite numbers factorization. Various meth-
ods for solving this problem were described and also their comparative characteristics were given. The
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Introduction

Several approaches to solving the problem of
decomposition of numbers into prime factors have
been formed at the present time [1]. The methods
variety can be divided into two classes: exponential
and subexponential algorithms. Significant efforts of
researchers are focused on this problem because its
solution is important for both from the theoretical
and applied points of view. Many areas of mathe-
matics and computer science have been brought to
bear on the problem, including elliptic curves, alge-
braic number theory, and quantum computing.

The solution of many mathematical problems in
the mathematical theory of numbers, algebra, func-
tion theory and the theory of dynamical systems is
associated with the assumption that the decomposi-
tion of the studied classes numbers is already
known. This applies to the large Fermat theorem and
its generalizations to the problem of solving the dis-
crete logarithm problem, the theory of recursion in
algebra, the theory of finite fields, and the theory of
finite groups [2, 3]. An important trait is that a sim-
ple quick and affordable multiplicative decomposi-
tion of composite numbers can become an arithmetic
operation that is inverse to multiplication, and thus
replenish the arsenal of the mathematics computa-
tional means. On the other hand, the need of effec-
tive factorization methods follows from the modern
theory of modeling complex dynamic systems [2],
from the methods for constructing pseudo-random
number generators and also from the deepening
Monte Carlo methods. It is especially relevant in
modern theoretical and applied cryptography [3, 4].

The need of numbers factorization often arises
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in cases of solving many mathematical problems. It
determines the mathematical significance of creating
an algorithmic effectiveness method. In the elemen-
tary number theory a number of problems, the solu-
tion of which is connected with the necessity of ex-
pansion of natural numbers into prime factors can be
identified. This applies to pseudo-prime numbers.
Number n is usually called pseudo-prime on the
basea, if the following condition is satisfied:

G.C.D.(a, n)=1 anda"™* =1(modn), i.e. the small
Fermat theorem holds. Such numbers are also called
Carmichael numbers [1].

Factorization problem due to pseudo-prime
number theory

According to Manin's definition every pseudo-
prime number n is odd and is a product of odd

k
primes n =] p{", where p; belong to odd clas-
i=1
ses of numbers and p, > 2,..., p, > 2, and also the
following conditions are satisfied:

1. GCD(an)=1;

2. a"*=1(modn);

3. a”" =1(modn);
k

4. n=J]p". p>2i=1..k
i=1

Conditions 1-3 correspond to definition and
condition 4 corresponds to the Euler theorem [2]. In
this case it is always necessary to be able to calcu-

late the Euler function gz)(n) [5].
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p(n)=(pf* = pi™)..(pr — pi ™).

It is proved that there is the infinity of pseudo-
prime numbers. Moreover, on page 23 of [3], the
author notes that for the number n that is free from
squares, the condition that p —1divides the value

n—1 (for all pcoprime ton) — is equal to the fact

that n is the Carmichael’s number. This is an im-
portant property of pseudo-prime numbers. Howev-
er, the concept of pseudo-primality depends on the
value a. All pseudo-prime numbers in the base of a
are in odd classes due the classification of numbers
that based on the Fermat's theorem. However, the
law of their distribution between classes requires to
be analyzed.

Simultaneously, the pseudo-primality format is
considered by Euler pseudo-prime numbers n in the
base of a as pseudo-primality format, where

G.C.D(a,n)=1 and the following condition is ful-
filled:

a2 = (%}(mod n) (1),

where (Ej - the Legendre symbol by definition:
n

0,if a=0(modn)
(%) =1lifa=b’(modn)be(Z/nZ)* (2).
—lelse

It was found that if for all a such that
ae(Z/nZy, where (Z/nZ)* - is a multiplica-
tive group of integers by modulo n, and the condi-
tion (1) is true, then the number n - is prime in con-

trast to pseudo-prime Carmichael numbers. This fact
follows from the Chinese remainder theorem applied

to the multiplicative group (Z /nZ)*. The evidence
is found in favor of the fact that the smallest number
a, for which condition (1) is not satisfied does not
exceed 2lognloglogn [4].

For these reasons (1) is a base of algorithms for
distinguishing the primality of a numbern. The de-
composition of n into prime factors is much more
complicated in contrast to the primality test algo-
rithms of natural numbers.

Factorization problem in cryptography

Factorization of large odd composite numbers
is an extremely significant part of cryptography due
to the fact that numerous algorithms are based on the
complexity of this task. This circumstance is funda-
mental for a variety of cryptographic algorithms and
serves as a defense against potential attempts of
hacking: for creation and multiplication of two
prime numbers of large digit capacity no significant
expenses are required, while their factorization is
much more time-consuming and labour-intensive
process. This fact defines the factorization operation
to be the candidate for the one-way functions. For a
long time there was no known method of factoring
integer numbers that consists of more than 30 digits.
Due to this, the use of natural number as the value of
n, that consisting of more than 100 decimal places,
provides a guarantee for the security of cryptosystem
encryption based on the RSA algorithm. The algo-
rithm is used in a variety of cryptographic applica-
tions among which: PGP, S/MIME, TLS/SSL,
IPSEC/IKE and others [5].

Currently, the RSA-key length of 1024 bits or
more per length should be considered as the trust-
worthy encryption system. The keys of 1024 bits in
length will no longer be safe in the next three years
[6].

The RSA algorithm is based on the difficulty of
obtaining a secret key by an attacker with a known
public key. Keys are obtained as follows:

1. Two random primes are generated
pand q.
Calculating n= pq.

Calculating (p(n) =(p —1)(q —1),
where ¢(n) - Euler function to n.

4. Choosing integer €, such that
l<ex< go(n), e - is called an open ex-
ponent.

5. Calculating number d, multiplicatively
inverse to the number € modulo n, i.e;
de=1(modg(n)), d- is called a
closed exponent.

An attacker can easily find a secret exponent
and thereby hack RSA by knowing the decomposi-
tion of the module n into the product of two prime
numbers. At the present time any effective non
guantum algorithm for factoring integers is un-
known. However, there is also no proof that this
problem can’t be solved in polynomial time. Conse-
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guently, the creation of new one and the improve-
ment of already existing factorization algorithms is
an extremely important task of cryptography.

Classification of factorization methods

Typically, the number n e N that fed into the
factorization algorithms must be decomposed into

prime factors consisting of N :[Iog2 n]+1 digits

(if n represented in binary form). The algorithm
organizes a search for one prime divisor, after which
it is possible to start the algorithm again with new
data for the purpose of further factoring, and so on
until we expand the given number finally. Also, be-
fore starting the factorization of a large number it
should be checked whether it is not prime. There are
many primality test algorithms to do this [7]. This
problem is solvable deterministically in polynomial
time [7].

Despite a longer working time, exponential al-
gorithms still have a place to be considered, and
their analysis and improvement are important tasks
of modern mathematics. There are a number of rea-
sons for this such as:

- Exponential algorithms are used for factoring
small numbers. So, for example, in some subexpo-
nential methods, small auxiliary numbers are de-
composed by using exponential methods [8].

- Subexponential algorithms are often direct
descendants of exponential ones. Exponential algo-
rithms are important for further research in order to
develop both new and improve existing algorithms
[8].

- Exponential algorithms are strictly analyzed
and determined in contrast to subexponential [8].

- In solving the problem of the discrete loga-
rithm one of the basic operations is the factorization,
thus factoring algorithms are their basis. For numer-
ous algebraic groups, only exponential algorithms
are known to calculate the discrete logarithms [8].

The aim of the algorithm is to decompose a
large odd composite number into factors in a mini-
mal average time. An important point is the compu-
tational complexity of the algorithm, the complexity
of its implementation, and the amount of resources
spent in its work in relation to the complexity of the
problem.

Pollard algorithm and its analysis

It is important to consider the exponential Pol-
lard’s (p —1) method, which in fact, is the ancestor
of ECM method. The Lenstra algorithm is a com-
plete analog of (p —1) Pollard algorithm, where the

operation of raising to the power of a prime number
p is replaced by the operation of multiplying the

point of the elliptic curve by a factor p . Otherwise,
the organization of the first and second steps may be
performed completely analogously to the (p—l) -

method.

His idea is described by the following algo-
rithm. Let n — is the number that is factorized and
1< p < n—its primal divisor. According to Fermat's

little theorem, for any a, 1< a < p, the condition

af* zl(mod p) is satisfied. It is also satisfied if
instead of the degree p —1 take an arbitrary natural
number m multiple to p-1, so that if

m=(p-1)k, then a" =(a"*) =1¢ =1(mod p).
The last condition is equivalentto a™ —1= p* for

some integer « . For this reason, if p is a number
divisor of n, so then p is a divisor of the greatest

common divisor G.C.D.(n,am —1) and coincides

with it, if a”™ —1<n. Let p—1=p®p,2..p*.
Idea of (p—l) Pollard method is to select m in the

form of a product of the greatest possible number of
prime factors or their degrees so that m be divided

by each factor p/', included in the expansion.

Then, G.C.D(n,am —1) gives the desired divisor.

The algorithm consists of two stages.

At the first stage, it is important to use the con-
cept of a “smooth” number. According to the defini-
tion of Leonard Adleman, an integer is called
smooth, if it consists of small prime factors. At this
stage, it is assumed that n is b -smooth number, i.e.
none of the prime factors of the number n does not

exceed a number b. Further, the number
m(b)= H p must be calculated, where the prod-
i

uct is over all simple p; in the maximum degrees
k. :pS <b. In this case, the required divisor is
q=(d-1n), where d =a™®(modn) [7].

The second stage fixes bounda-
riesb, =b,b, >>b, usually b, <b?[7]. Next step
is the search dividers n, such that p—1=qa,
where a - is b -smooth, and g - primal, such that
b, <q<b,. Then we use a vector of primes @
from b till b,.
¢, = d,(modn),

Then sequentially calculated

¢ = ¢ (mod n),
whered, = am(bl)(mod n), that was calculated at the
first stage, at each step counting g = (ci -1, n) and
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Vo, € A, where A - finite set. When g =1, calcu-

lations stop.
According to calculations of the algorithm run-
ning time from work [8], provided that the parame-

ters b, and b, that are the limits of the first and sec-

ond stages are chosen. The execution time of the
first stage depends on the number of prime numbers

and their degrees on the interval [2; b]. For each
degree p“, less than b, produced « modular ex-

ponentiation and require log, p <log, b, squaring
operations and multiplications modulo the number
n. The total number of operations is estimated by
the amount O(b, logb, log? N). The method finds
prime factors of small and medium size (less than
20-25 decimal digits) very quickly. According to
Montgomery, the second stage of the algorithm re-
quires

O(Iog2 b2)+ O(Iogqﬂ(bl))Jr 2(z(0,)—7(b,)) mul-
tiplications by modulo n and computing G.C.D.
with n. Without considering terms of smaller order,
the estimate will be O(7(b, )) [8].

Quadratic sieve and numeric field sieve
methods overview

The quadratic sieve method, the numeric field
sieve method and the elliptic curve method are the
most effective among the subexponential factoriza-
tion algorithms.

The scheme of the algorithm for the Pomerance
guadratic sieve is presented in the following form.

The first step is constructing x* = y?(modn), then
checks the validity of inequality:
1< G.C.D.(Xi Y, n)< n. For this purpose we con-
sider the polynomial

Q(x)= (x + [\/ﬁ])z —n=H(x)*(modn),
H(x)=x+ l\/ﬁj Values of Q(X) at integer points
are squares modulo n. Coefficients Q(X) small,

where

close to n*2. As a factor base S is considered
Po=—1 and all primes p,,p; <b such that

n
(—j =+1. After that, calculating the values X;
P

using some sieving, wherein X; is the value for

which a; :Q(xi):H P is true, thus Q(X, ) de-

peS
composes in the factor base [7]. Consequently, de-
noting b, = H(x,), concluding b’ = a,(mod n),
accumulated a sufficiently large number of such re-

lations, the elimination of variables is performed and
the equation x* = y?(modn) can be defined [7].

The method of a quadratic sieve with the use of
several polynomials is an efficient and easily im-
plemented computer algorithm. It is the best known
algorithm for the factorization of arbitrary numbers

neN, n<10", except for the method of factori-
zation by means of elliptic curves, which in some
cases can work faster [7]. Algorithm requires

O(e (L+o(t))innininn ) arithmetic operations by adopting

a number of hypotheses about the distribution of
prime numbers as a function of the number n [7].
The number field sieve is the most effective
factorization method for large numbers at the current
time. In fact, the number field sieve is not an algo-
rithm. This is a calculation method that consists of
several stages, which are served by several algo-
rithms. Detailed description of SNFS and GNFS are
very extensive and all the principles and basics of
these algorithms are described in details in the [9].
The complexity rating is equal tolL, [1/3;0] for

some constant C [7].
Lenstra method overview

We can distinguish the method of elliptic
curves, which is the most perspective among the
subexponential algorithms. It is based on the theory
of elliptic curves. Lenstra has created this method of
decomposition into prime factors and algorithms
obtained on it suggest that for its further improve-
ment it is possible to create a much more efficient
algorithm than the base ECM. An important feature
of this algorithm is that its performance depends not
on the number n itself but on the smallest factor
only. This point is crucial when using a method of
elliptic curves, since it opens new opportunities to
use it in complex with other factorization algo-
rithms. Such as the quadratic sieve method, which is
also subexponential, but it works faster for numbers
which divisors are large enough. The Lenstra meth-
od is the best algorithm for finding simple divisors
of 20-25 characters per length [4]. However, in the
case of using RSA, this fact is a significant draw-
back of this method, due to the fact that the RSA
algorithm is based on multiplying of two large
primes. Accordingly, the Lenstra method in this case
is not optimal for the cryptosystem based RSA at-
tack.

From the ideological point of view, the method
of elliptic curves was created for the solution of cer-
tain classes of problems in classical mathematical
analysis. From a conceptual point of view, elliptic

curves can be considered over finite fields Fp , When
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p >3 - is primal odd number. The first results in

this area were focused on solving problems in ab-
stract and numerical number theory. Later they were
generalized to the case of fields of the form Fpk,

when k>1. A lot of important results were ob-
tained for fields sz .

One of the valuable and laborious problems in
the theory of elliptic curves is the problem of com-
puting the order of the group of an elliptic curve
over a finite field. The set of points of an elliptic
curve E_ (Fp) [10] for any finite field is given by:

3
Ea,b (Fp)z p+1+ Z(wj

Xer p

3).

The computation of the elements of this set for
large p represents in the computational sense as a

very labor-consuming problem. In the above expres-
. (x3 +ax+b

sion | ——
Y

E.,(F,) consists of points (x,y)mod p) that lie

on the given elliptic curve and one another corre-
spond to an infinitely distant point [10]. The Hasse
theorem is an important result of the theory of ellip-
tic curves. According to this theorem, the following

assertion is correct: power of E_ (Fpk ) satisfies the

] is a Legendre’s symbol. The set

inequality:
p+1-2p <#E,,(F.. )< p+1+2/p,

where #E,_, (Fpk) - the number of points

lying on a given elliptic curve, or in other words the
power of a given curve, or the order of this curve.

The arithmetic of elliptic curves allows us to
state that if n- is a prime number the point at infini-
ty means a unique additional projective point on an
elliptic curve that does not correspond to any affine
point. If n is composite number, then there are other
projective points, which do not correspond to any
affine point. Nevertheless, we will allow only one
additional point that corresponds to the projective

solution [0,1,0]. Due to this limitation in the defini-

tion of the elliptic curve group, the pseudo-elliptic
curve no longer forms a group with a composite n.
It is easy to prove that there are pairs of points P

and Q, for which the sum P+Q - is undefined.

This explains by the structure of the angular coeffi-
cient:

Y2 N it x 2 x,
m = Xo =%
3%+ 20k, + A . ’
T it x =X,
2y,

where P=(x,,), Q=(x,,y,).
The above results carry over to the elements of
the set E,,(Z,), which differ from elliptic curves in

the case when n - is a composite number. In this
case, the concept of elliptical pseudo-curve is used
this curve defines by the conditions:

1. abeZ,

2. GC.D(ab)=1

3. GC.D(4a®+27b% n)=1

4. E,(2,)={xy)ez, xZ,:y? =x* +ax+bjv O},

where O - infinitely corresponded point.
The curve in this case has the following form
E(Z,):y?> =x®+ax+b. In a strict mathematical

formulation, this curve is not considered as an ellip-
tic curve (such a curve is also called pseudo-curve),

since F, is not a field according to it the operations
of finding the inverse element that are necessary to

find the sum of the points of the curve are not al-
ways feasible in it. It goes from the impossibility of

calculating the sum of two points P(Xl,yl) and
Q(Xz, yz), it turns out that the difference between

the first coordinates X, —X; must be equal to zero
modulo one of the divisors of n, thus, computing
the greatest common divisor G.C.D.(n,xz—xl),

there is a divisor of the given composite number [9].
Lenstra's algorithm is to select an arbitrary base

point and pseudo curve E,, (Fp) P, and to multi-

ply it subsequent by various prime numbers and
their degrees until they get:

kP, =co(mod p), (4)

where p —is one of the dividers of n.

Since, none of the divisors of n is known in
advance, it is not possible to check whether condi-
tion (2) is satisfied. According to this fact, the sign
of successful completion of the algorithm is the ful-
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fillment of condition G.C.D.(n,c): d>1 in the
doubling operation or addition of points in the calcu-
lation of the next multiple ¢ point P, when calcu-
lating the angular coefficient.

Many cryptographic applications are based on
the theory of elliptic curves. Typically, the general
idea in these applications is that a known algorithm
which makes use of certain finite groups is rewritten
to use the groups of rational points of elliptic curves.
Elliptic-curve Diffie-Hellman algorithm, Elliptic
Curve Digital Signature Algorithm, EdDSA, Dual
EC DRBG, Elliptic curve primality proving, Su-
persingular isogeny key exchange and many other
algorithms using elliptic curves.

ECM algorithm

The algorithm can be represented in the follow-
ing form:

The input is a composite number n, which
must be decomposed into prime factors.

1. The limit of the first stage b, is chosen.

2. Arandom curve anb(Zn) and a point on it
with coordinates (x,y) are generated.
Moreover, b=y?—-x®—-axmodn and
g =GC.D(n4a® +27b%). Further, if
g =n, then we have to return to the curve
generation and if 1< g <n, then a divisor

is found.
3. For every prime number p <b, the greatest
degree is determined ¢«; such that

% <b,. Then a loop is executed for all
Jj=1:a,, P=p,P, as a result of which

the point P multiplies by p“ . Each mul-
tiplication by p is performed using the el-
liptic multiplication algorithm: the addition-
subtraction scheme [10].

Remarks to ECM

The computation continues until all the prime
numbers that are less than b, will be passed, or until
there will be no step on which condition
G.C.D.(n, P): d >1 is satisfied, that is signaling

that g =G.C.D.(n,d) is nontrivial divisor. If the
last condition is fulfilled, then the desired divisor of
n is found [11]. In another case, we increase b, , or

change the elliptic curve and repeat all over again.
With the help of implemented in practice pro-
gram by using the computer-programming language

Java, the following results were achieved: with the
smallest divisor 4 decimal digits long, the average
work time is equal to 6.985 seconds, in 3 decimal
places 1.4 seconds, in 2 decimal places 0.166 sec-
onds. In general, the results correspond to the
subexponential estimation of the algorithm.

There are different cases in the operation of el-
liptic multiplication by pseudo-curve. The concrete
case depends on the used chain of additions. So the
point SP can easily be calculated, when it is calcu-

lated by means of a chain P —2P —4P —»5P.
However penultimate elliptic addition may not be
feasible, even if the calculate of this point provides
by a chain P — 2P — 3P — 5P . However, if two

different chains that obtain KP by additions are
achievable, then an identical result is obtained in
both cases [10].

Until now, all calculations have been performed
by modulo n, i.e. after each operation when the re-
sult exceeds the value of n, the remainder of the

number dividing obtained by n was taken as a re-
sult. In case when the coordinates of the obtained
points are calculated by modulo p, which is a divi-

sor of n, we get the following condition for the suc-
cessful completion of the algorithm:

kP=oo, k= []p" (@

pit<B

and in this case the curve y* = x* + ax+b is con-
structed over a finite field F,. Let | =# E(Fp) is
the number of points of this curve. According to

Hasse theorem | e [p +1—2\/(_p), p+1+ ij

According to the fact that for every point Q(x, y)
the condition 1Q = oo is satisfied, then, in order to
ECM method to be successfully completed, it is nec-
essary that factor k in (4) is divided by the order of
the curve |. In the case when, all dividers | do not
exceed the boundaries b, , the last condition is satis-
fied. For the successful completion of the algorithm,
it is required that all dividers | of kind p“, except

for the last one, were less than the border bl, and
the greatest divisor p“ had degree oz =1 and was
less than the border b, [11].

ECM analysis

The required boundary for the degrees of divi-
sors of | depends on the #E, (Fp), which is de-

termined by the coefficients of the elliptic curve a
and b . At the moment, there is no known reliable
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algorithm for choosing a curve with the smallest
value of the maximum degree of the divisor of

#E,(F, ).

The number of performed arithmetic operations
is estimated by the value: eVZo@Wmenline) 52 or

L{%;ﬁ} at L-notation, where p - the smallest

divisor of a number n. L-notation, this is an asymp-
totic notation analogous to O-notation, that is used
for the approximate estimation of computational
complexity of the algorithm and is determined by

the formula:L, [a, C] — g(c+o@)n p)* (inin )~ by

p—ow, where c=const, ce(0;0) and

a = const, a € [01].
Since the value of the factor p is unknown the

choice of the value b, is performed empirically.

That definitely worsens the reliability of the practi-
cal estimate of the method convergence. Adding the
second stage of computations to algorithm preserves
the general asymptotic estimate and at the same time
provides a large practical increase in the rate of con-
vergence of the method [11].

It is important to research [7] the probability of
finding a certain b -smooth number in the Hasse
interval (in this case there are curves with a smooth
number order). At the moment, it is not known
whether there is always a smooth number in the in-
terval. The L-notation that based on the heuristic
probabilistic methods of the Canfield-Erdoes-
Pomerance theorem [8], gives an estimate that in
order to obtain a smooth order of the group it is suf-

ficient to take L[‘/Ez \/E} curves.

According to frequent using of a random num-
ber generation (clauses 1 and 2 of the algorithm), it
is critically important to use efficient pseudo-
random number generators.

In addition, the algorithm uses a set of primes

from the interval [2;b,]. Proceeding from this, the

question of finding prime numbers in a given inter-
val remains to be opened (in the practical implemen-
tation of the method, sieve of Eratosthenes was
used).

The question of correct curve generation is re-
mains to be opened. Due to the algorithm, it genera-
tion has random a character and the condition

b=y?—x*—ax(modn) is satisfied. However,
such an approach cannot be considered as accepta-
ble. Firstly it is probable that the given curve will

not be — b, -smooth. It is known that the base algo-

rithm will not be able to detect the divisor in that
case. This disadvantage can be compensated by us-
ing the second stage of the extended ECM algo-
rithm. However, such "optimization" leads to com-
putational complexity increase. An important task is
to identify the optimal classes of elliptic curves for a
given algorithm. It is important to investigate the
possible relationship between elliptic curves and
modular forms. It is still unknown if they are similar
or fundamentally different structures.

In comparison of the three considered subexpo-
nential methods (ECM, quadratic sieve QS method
and NFS numerical field method), the dimension of
the smallest divisor of the composite n is the main
trait. In the case when the number n is chosen by
the RSA method, which means that it is represented
by the product of two prime numbers of the approx-
imately same length, then the elliptic curve method
has a similar estimate with the quadratic sieve meth-
od, but is inferior to the sieve method of the numeric
field. In case when n has a dimension that exceeds
the record for QS and NFS methods, the only way to
find a divisor of n is factorization by Lenstra meth-
od [14].

Ways of the ECM optimization

Due the fact that the Lenstra method is a child
of the (p —1) in some way it also has an extension
in the form of a second stage. It is assumed that the
order of #E, (Fp) is not equal to the smooth b,

no matter what choice of the value b, is made, on

the basis of this, the base algorithm will not be able
to detect the divisor. However, it is quite possible
that

#Ea,b (Fp): q H piai (5)1

PRI <B

where g — is a prime number that greater than b, .

In the case where one out-of-bound prime number is
a part of the unknown order factorization, there is no
need to multiply the current point by every prime

number from the interval (b,,q]. Instead of this it’s
permitted to use point

Qz{Hp?‘}P (6).

which, in fact, remains after the first stage of the
ECM algorithm, and the points

[qo]Qr[qo +A0p’[q0 +AO +A1]Q""’ (7)’
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are tested, where q, — is the smallest prime that
exceeds bl, and A; — are differences between ad-
jacent prime numbers after (,. Some points

R = [Ai]Q (8),

are stored to be used repeatedly, after which the
specified prime numbers greater than b, are veri-
fied, by successive elliptic additions using the corre-
sponding R;. The main advantage is that the multi-
plication of a point by a prime number q requires
O(In q) elliptic operations, while addition by using
a pre-computed point R; is the only operation [11].
Pollard p —1 algorithm is in fact the progenitor
of the elliptic curves method [11], as was said earli-
er. The algorithm factorizes p, such that (p —1)- is
a b -smooth for some small b. For any e, that is
multiplicity to (p—l), and for any a, mutually
prime with p according to a small theorem of Fer-

mat, a® =1mod p. In this case G.C.D.(ae —1,n)

is more likely to be a divisor of n [11]. However, the
method does not work [11], if p has large prime

divisors. ECM in this case will work correctly, be-
cause the group of a random elliptic curve over a

finite field F, is used instead of considering a mul-
tiplicative group, over F, order of which is always
equal p-1,.

In addition to this optimization in the form of a
"second stage" and its variants, there are a number of
other ways to optimize the Lenstra method proposed
by Crandall and Pomerance [14] such as:

1. Special parameterization, in order to quickly
obtain random curves.

2. Selection curves which orders are divided by
12 or 16 [15].

3. Optimizing the arithmetic of large integers
and in particular elliptic algebras, as an option, by
using a fast Fourier transform (FFT).

4. Fast algorithms applied to the second stage,
for example "extended FFT", that is a scheme for
calculating the values of a polynomial applied to sets
of previously computed X -coordinates.

In addition, due to the parallel implementation
of ECM with distributed memory [16], an almost
linear acceleration can be obtained. Thus, it becomes
possible to obtain a large amount of computing
power with the help of cloud computing provided by
a variety of services, such as Amazon [17].

Also, the correct choice of boundariesb, ...b,

is important. In practice it makes possible to get the
fastest running time of the algorithm. For the correct
choice of such boundaries, the Brent’s table [15] is
used. In this table the recommended boundary val-
ues for close numbers of a certain digit are indicated.

Elliptic curves over finite fields are described in

this work. The question about optimal structure of
curve for this algorithm remains open. There are a
great number of elliptic curve alternative representa-
tions. Such as: Hessian curve Edwards curve, Twist-
ed curve, Twisted Hessian curve, Twisted Edwards
curve, Doubling-oriented Doche—Icart—Kohel curve,
Tripling-oriented Doche—Icart—Kohel curve, Jacobi-
an curve, Montgomery curve and many others. Each
of them should be considered.

The construction of families of elliptic curves
over the rational numbers Q which have simultane-

ously nontrivial torsion and nontrivial rank is de-
scribed in work [18]. These curves are then used to
speed up the ECM algorithm. There also indicated a
limited use of elliptic curves with complex multipli-
cation.

However, the question about the security of
cryptosystems based on the complexity of factoriza-
tion remains to be opened. It does due to existence
of quantum computers that realize the substantiated
quantum Shore factorization algorithm that can
solve the factorization problem in a polynomial time
[19].

Conclusion

In total, you can get a significant reduction in
the algorithm running time. Proceeding from the
foregoing, it is quite obvious that, in spite of a fairly
good estimate of the operation of the basic ECM
algorithm. It has a truly great potential for improve-
ment and is quite worthy of the title of one of the
most promising factorization algorithms. At the
same time, it is fairly simple to implement and clear
to understand. Although the ideas of each of these
methods are clear, however, their exact implementa-
tion is a very complex process. Moreover, it is im-
portant to combine all the proposed methods so that
the algorithm to be the most effective. This work is
the first step towards the creation and implementa-
tion of such an algorithm combining various ideas
for optimizing the basic ECM method.

Summing up, we can say that the ECM algo-
rithm, due to its subexponential nature, is well appli-
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cable in practice and it should be investigated in
more detail, due to its prospects in terms of optimi-
zation. It is necessary to direct as much effort as
possible to the development of the Lenstra method
for the reasons that the factorization problem is one
of the fundamental in modern mathematics and
number theory. It is important both in their theoreti-
cal aspects and in the applied sense.
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AJITOPUTMIYHI ITIPOIECU ®AKTOPHU3AIIIT BEJJTMKUX UACEJI, 3ACHOBAHI HA TEOPII
EJIIITHNYHUX KPUBUX

Boctpos I'. M., Jlepmensku 1. 1.

Oodecvkuil HayionanvHull norimexuivnull ynisepcumem, Qdeca, Yxpaina

Anomauisn. B Oaniii pobomi poszensoaemvcsi npodiema paxmopuszayii eIuKux cKiadosux yucei ma it
Micye ceped MameMamuyHux ma iHpOpMayiiiHux HAYK, a MAKoIC ix NPUKIAOHUX acnexkmis. [loknaono onu-
CAHULl 83AEMO36 30K MIJIC MEOPIEI NCeBOONPOCMUX Yucel I 3a0auer) PO3KIAOAHHSA HUCLA HA NPOCHI
muodxucHuky. Himxo idobpasicena sanedcHicms cyuacnoi kpunmoepaii 6i0 eupiwienus 3a0ayi gpaxmopu-
3ayii, 30kpema, PyHOAMeHMAanbHICMb 0AH020 NUMAaHKS Osl Kpunmozpapiunozo areopummy RSA na ocro-
8I, IKO20 CMBOPEHO GelluKe HUCIO NPUKIAOHUX Kpunmozpagiunux npoepam. Jana knacugpixayis cyuacHux
Mmemodie Odexomnosuyii uucen. Onucani npuyunu 0s1 O0CIIONHCEHHA KOJHCHO20 ¢ Kuacig. [lpugedeno aneo-
pumm memooda Ilonnapoa i 11020 ananiz, OCKibKU GiH AGIACMbCA 0€sAK020 POOy Npapooumenem memooy
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eninmuyHux Kkpusux (memooa Jlencmpu), sikuii beznocepeouvo pozensioacmoca y cmammi. Ceped cydexc-
NOHEeHYIHUX Memooie eudineHi: «Memood keadpamuyno2o peuwiemay, ma «Memoo pewiema yuci08020 no-
TS, AK OOHI 3 HAUBUOWUX, OAHA IX KOPOMKA XAPAKMEPUCTNUKA, OYIHKA 00UUCTIOBANbHOI CKIAOHOCMI ma
NOPIGHANbHULL AHANI3 Midic c00010 ma memodom Jlencmpu. JlemanvHo onucari ocnosu memoda Jlencmpu, a
maxoxc ioei Ha AKUX 8iH OA3YEMbCA, HA3BAHI 20]106HI 0COOAUBOCNI MAMEMAMUYHUX Onepayill Ha elinmuy-
HUX KPUBUX [ GIACMUBOCI eNINMUYHUX KPUBUX K MAMEMAMUYHUX 00 €KMI8, AKI HAOAIOMb MOJICIUBICIb
suKopucmosgygamu ix 3 yimo ¢haxmopuszayii. /femanvrno no Kpoxam ONUCAHUU CAM AN2OPUMM MEMOOY.
Ilpuseodeni pesyromamu po3xiady eauKux CKIA008UX YUCET, OMPUMAHI 3 0ONOMO2010 peani3oeanoi Ha
npaxmuyi npozpamu. Memoo pemenvHo npoananizosanull, 0aHa to2o O0OYUCTIOBANbHA OYIHKA, ONUCAHI
yMo8u o020 30ixcnocmi. Hazsawni pynoamenmanvui npobaemu aneopummy, sKi nioasiearoms 0008 a3K080My
Ma HAUCKOPIUWOMY BUPIUEHHTO, BAXCIUGE Micye ceped AKUX 3aUmMarmys: npobrema eubopy Kpueoi, npooie-
Ma 2eHepayii nce008UNAOKO8UX NOCTIO08HOCHEL, NPOOIeMA NOULYKY 2la0KuX yucel. Buxnadeni mociusi
sapianmu onmumizayii, 30Kkpema, ONMuUMI3ayia aHaro2ivHa mil, wo npugooumscsa 6 memodi llonapoa y
saxocmi Opyeoi cmaodii. Ilocmasneno numants wooo 83aEMO0ii Makux cnocodie ONMUMI3AYIl AIeoPUMMy
ma modcausoi peanizayii. Iliokpeciena ma o0IpyHmMoBaHaA NEPCHEKMUBHICIb MemOOy eNinMUYHUX KPUBUX
6 NOPIBHAHHI 3 THWUMU CYYACHUMU Memodamu ¢haxmopuzayii. Onucani npiopumemui WaAXy GUPIUEHHS
npobaemu ghpaxmopuzayii.

Knwuogi cnosa: xpunmocucmema, ghaxmopuzayis, erinmuyna Kpued, 21aoki 4ucid, ckiadosi uucia,
ncegdonpocmi Yucia, nces0o-Kpuad, KiHyege noie.

AJITOPUTMHUYECKHUE MNPOLECCHI PAKTOPU3SALIUA BOJIbIINX YNUCEI,
OCHOBAHHBIE HA TEOPUH SJUIMIITHNYECKNX KPUBbIX

Bocrpos I'. H., Aepmenxu U. /1.
Ooecckuil HaYUOHATbHBIL norumexnudveckull ynusepcumem, Oodecca, Yxpauna

Annomauus. B oannou pabome paccmampusaemcs npooiema Gaxmopuzayuy coCmasHuix yucen. boi-
JIU ONUCAHBL PA3IUYHBIE MEMOObl PeuetUs Mol npooleMbl, a MAKiCe NPUEeoeHbl UX CPAGHUMeNbHbIE Xa-
paxkmepucmuxu. Aneopumm memooda Jlencmpwi Ovin npoananuzuposan u nodpoobmno onucan. llpusedensvi
pe3yabmamul e2o pabomal. J{anvl CHOCOObL €20 ONMUMUAYUU.

Knwouesvie cnosa: kpunmocucmema, axmopuzayus, dIIUNMUYECKAs. KPUBAS, 21A0KUe YUcida, cocmas-
Hble YUCTd, NCeBOONPOCIble YUCA, NCEBOOKPUBASL, KOHEUHOe NoJle.
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