
 
 

 ISSN 2221-3805. Електротехнічні та комп’ютерні системи. 2018.  № 28 (104)

UDC 681.3.06. 

 ALGORITHMIC PROCESSES OF THE LARGE NUMBERS FACTORIZATION BASED             

 ON THE THEORY OF ELLIPTIC CURVES 

 G. Vostrov, I. Dermenji 

 Odessa national polytechnic university 

 Abstract. In this article we consider the problem of the composite numbers factorization. Various meth- 
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 Introduction

in cases of solving many mathematical problems. It 

determines the mathematical significance of creating 

an algorithmic effectiveness method. In the elemen-

tary number theory a number of problems, the solu-

tion of which is connected with the necessity of ex-

pansion of natural numbers into prime factors can be 

identified. This applies to pseudo-prime numbers. 

Number n  is usually called pseudo-prime on the 

base a , if the following condition is satisfied: 

  1,... naDCG  and  nan mod11 
, i.e. the small 

Fermat theorem holds. Such numbers are also called 

Carmichael numbers [1]. 

 Factorization problem due to pseudo-prime 

number theory 

According to Manin's definition every pseudo-

prime number n  is odd and is a product of odd 

primes ,
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where ip  belong to odd clas-

ses of numbers and 2,...,21  kpp , and also the 

following conditions are satisfied: 

1.   1,.. naDCG ; 

2.  nan mod11 
; 

3. 
   na n mod1

; 

4. 

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k

i

i
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1


, kipi ,...,1,2   

Conditions 1-3 correspond to definition and 

condition 4 corresponds to the Euler theorem [2]. In 

this case it is always necessary to be able to calcu-

late the Euler function  n  [5]. 

 Several approaches  to  solving  the  problem  of 

decomposition  of  numbers  into  prime  factors  have 

been  formed at  the  present  time [1].  The  methods 

variety can be divided into two classes: exponential 

and subexponential algorithms. Significant efforts of 

researchers  are  focused  on  this  problem  because  its 

solution  is  important  for  both  from  the  theoretical 

and  applied  points  of  view. Many  areas  of  mathe- 

matics  and  computer  science  have  been  brought  to 

bear on the problem, including elliptic curves, alge- 

braic number theory, and quantum computing. 

 The solution of many mathematical problems in 

the  mathematical  theory  of  numbers,  algebra,  func- 

tion  theory and  the  theory  of  dynamical  systems is 

associated  with  the  assumption  that  the  decomposi- 

tion  of  the  studied  classes  numbers  is  already 

known. This applies to the large Fermat theorem and 

its generalizations to the problem of solving the dis- 

crete  logarithm  problem,  the  theory  of  recursion  in 

algebra, the theory of finite fields, and the theory of 

finite groups [2, 3]. An important trait is that a sim- 

ple  quick  and  affordable  multiplicative  decomposi- 

tion of composite numbers can become an arithmetic 

operation  that  is inverse to multiplication,  and  thus 

replenish  the  arsenal  of the mathematics computa- 

tional  means. On  the  other  hand,  the  need  of effec- 

tive  factorization  methods follows  from  the  modern 

theory  of  modeling  complex  dynamic  systems  [2], 

from  the  methods  for  constructing  pseudo-random 

number  generators  and  also  from  the  deepening 

Monte  Carlo  methods. It is  especially  relevant  in 

modern theoretical and applied cryptography [3, 4]. 

 The  need  of  numbers  factorization  often  arises 

© G. Vostrov, I. Dermenji 2018 

Моделювання динамічних систем

Spectre
Пишущая машинка
223



ISSN 2221-3805. Електротехнічні та комп’ютерні системи. 2018.  № 28 (104) 

 

  Моделювання динамічних систем  

 

   1111 1
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It is proved that there is the infinity of pseudo-

prime numbers. Moreover, on page 23 of [3], the 

author notes that for the number n  that is free from 

squares, the condition that 1p divides the value 

1n  (for all p coprime to n ) – is equal to the fact 

that n  is the Carmichael’s number. This is an im-

portant property of pseudo-prime numbers. Howev-

er, the concept of pseudo-primality depends on the 

value a . All pseudo-prime numbers in the base of a  

are in odd classes due the classification of numbers 

that based on the Fermat's theorem. However, the 

law of their distribution between classes requires to 

be analyzed. 

Simultaneously, the pseudo-primality format is 

considered by Euler pseudo-prime numbers n  in the 

base of a  as pseudo-primality format, where 

  1,.. naDCG  and the following condition is ful-

filled: 

   n
n

a
a n mod2/1


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(1), 

where 



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n

a
 - the Legendre symbol by definition: 
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2

 (2). 

It was found that if for all a  such that 

 *,/ nZZa  where  */ nZZ  - is a multiplica-

tive group of integers by modulo n , and the condi-

tion (1) is true, then the number n  - is prime in con-

trast to pseudo-prime Carmichael numbers. This fact 

follows from the Chinese remainder theorem applied 

to the multiplicative group  */ nZZ . The evidence 

is found in favor of the fact that the smallest number 

a , for which condition (1) is not satisfied does not 

exceed nn logloglog2  [4].  

For these reasons (1) is a base of algorithms for 

distinguishing the primality of a number n . The de-

composition of n  into prime factors is much more 

complicated in contrast to the primality test algo-

rithms of natural numbers. 

 Factorization problem in cryptography 

Factorization of large odd composite numbers 

is an extremely significant part of cryptography due 

to the fact that numerous algorithms are based on the 

complexity of this task. This circumstance is funda-

mental for a variety of cryptographic algorithms and 

serves as a defense against potential attempts of 

hacking: for creation and multiplication of two 

prime numbers of large digit capacity no significant 

expenses are required, while their factorization is 

much more time-consuming and labour-intensive 

process. This fact defines the factorization operation 

to be the candidate for the one-way functions. For a 

long time there was no known method of factoring 

integer numbers that consists of more than 30 digits. 

Due to this, the use of natural number as the value of 

n , that consisting of more than 100 decimal places, 

provides a guarantee for the security of cryptosystem 

encryption based on the RSA algorithm. The algo-

rithm is used in a variety of cryptographic applica-

tions among which: PGP, S/MIME, TLS/SSL, 

IPSEC/IKE and others [5]. 

Currently, the RSA-key length of 1024 bits or 

more per length should be considered as the trust-

worthy encryption system. The keys of 1024 bits in 

length will no longer be safe in the next three years 

[6]. 

The RSA algorithm is based on the difficulty of 

obtaining a secret key by an attacker with a known 

public key. Keys are obtained as follows: 

1. Two random primes are generated 

p and q . 

2. Calculating pqn  . 

3. Calculating    1)1(  qpn , 

where  n  - Euler function to n . 

4. Choosing integer e , such that 

 ne 1 , e  - is called an open ex-

ponent. 

5. Calculating number d , multiplicatively 

inverse to the number e  modulo n , i.e: 

  nde mod1 , d - is called a 

closed exponent. 

An attacker can easily find a secret exponent 

and thereby hack RSA by knowing the decomposi-

tion of the module n   into the product of two prime 

numbers. At the present time any effective non 

quantum algorithm for factoring integers is un-

known. However, there is also no proof that this 

problem can’t be solved in polynomial time. Conse-
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quently, the creation of new one and the improve-

ment of already existing factorization algorithms is 

an extremely important task of cryptography. 

Classification of factorization methods 

Typically, the number Nn  that fed into the 

factorization algorithms must be decomposed into 

prime factors consisting of   1log2  nN  digits 

(if n  represented in binary form). The algorithm 

organizes a search for one prime divisor, after which 

it is possible to start the algorithm again with new 

data for the purpose of further factoring, and so on 

until we expand the given number finally. Also, be-

fore starting the factorization of a large number it 

should be checked whether it is not prime. There are 

many primality test algorithms to do this [7]. This 

problem is solvable deterministically in polynomial 

time [7]. 

Despite a longer working time, exponential al-

gorithms still have a place to be considered, and 

their analysis and improvement are important tasks 

of modern mathematics. There are a number of rea-

sons for this such as:  

- Exponential algorithms are used for factoring 

small numbers. So, for example, in some subexpo-

nential methods, small auxiliary numbers are de-

composed by using exponential methods [8]. 

-  Subexponential algorithms are often direct 

descendants of exponential ones. Exponential algo-

rithms are important for further research in order to 

develop both new and improve existing algorithms 

[8]. 

- Exponential algorithms are strictly analyzed 

and determined in contrast to subexponential [8]. 

- In solving the problem of the discrete loga-

rithm one of the basic operations is the factorization, 

thus factoring algorithms are their basis. For numer-

ous algebraic groups, only exponential algorithms 

are known to calculate the discrete logarithms [8]. 

The aim of the algorithm is to decompose a 

large odd composite number into factors in a mini-

mal average time. An important point is the compu-

tational complexity of the algorithm, the complexity 

of its implementation, and the amount of resources 

spent in its work in relation to the complexity of the 

problem. 

Pollard algorithm and its analysis 

It is important to consider the exponential Pol-

lard’s  1p   method, which in fact, is the ancestor 

of ECM method. The Lenstra algorithm is a com-

plete analog of  1p  Pollard  algorithm, where the 

operation of raising to the power of a prime number 

p  is replaced by the operation of multiplying the 

point of the elliptic curve by a factor p . Otherwise, 

the organization of the first and second steps may be 

performed completely analogously to the  1p  – 

method.  

His idea is described by the following algo-

rithm. Let n  — is the number that is factorized and 

np 1 – its primal divisor. According to Fermat's 

little theorem, for any a , pa 1 , the condition 

 pa p mod11 
 is satisfied. It is also satisfied if 

instead of the degree 1p  take an arbitrary natural 

number m  multiple to 1p , so that if 

 kpm 1 , then    paa kkpm mod111  
. 

The last condition is equivalent to  
pam 1  for 

some integer  . For this reason, if p  is a number 

divisor of n , so then p  is a divisor of the greatest 

common divisor  1,... manDCG  and coincides 

with it, if nam 1 . Let t

tpppp


...1 21

21 . 

Idea of  1p  Pollard 
 
method is to select m  in the 

form of a product of the greatest possible number of 

prime factors or their degrees so that m  be divided 

by each factor i

ip


, included in the expansion. 

Then,  1,.. manDCG  gives the desired divisor. 

The algorithm consists of two stages. 

At the first stage, it is important to use the con-

cept of a “smooth” number. According to the defini-

tion of Leonard Adleman, an integer is called 

smooth, if it consists of small prime factors. At this 

stage, it is assumed that n  is b -smooth number, i.e. 

none of the prime factors of the number n  does not 

exceed a number .b  Further, the number  

  
i

k

i
ipbm  must be calculated, where the prod-

uct is over all simple ip  in the maximum degrees 

bpk ik

ii : . In this case, the required divisor is 

 ndq ,1 , where 
  nad bm mod  [7]. 

The second stage fixes bounda-

ries bbbb  21 , , usually 
2

2 bb  [7]. Next step 

is the search dividers n , such that qap 1 , 

where a  - is b -smooth, and q  - primal, such that 

21 bqb  . Then we use a vector of primes iq  

from 1b till 2b .  Then sequentially calculated 

 ndc mod10  ,  ncc i

ii mod1



 ,  

where
   nad
bm

mod1

1  , that was calculated at the 

first stage, at each step counting  ncg i ,1  and 
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 i , where   - finite set. When 1g , calcu-

lations stop.  

According to calculations of the algorithm run-

ning time from work [8], provided that the parame-

ters 1b  and 2b  that are the limits of the first and sec-

ond stages are chosen. The execution time of the 

first stage depends on the number of prime numbers 

and their degrees on the interval  b;2 . For each 

degree 
p , less than b , produced   modular ex-

ponentiation and require 122 loglog bp   squaring 

operations and multiplications modulo the number 

n . The total number of operations is estimated by 

the amount  NbbO 2

11 loglog . The method finds 

prime factors of small and medium size (less than 

20-25 decimal digits) very quickly. According to 

Montgomery, the second stage of the algorithm re-

quires 

         122

2 2loglog
1

bbqObO b    mul-

tiplications by modulo n  and computing G.C.D. 

with n . Without considering terms of smaller order, 

the estimate will be   2bO   [8]. 

Quadratic sieve and numeric field sieve 

methods overview 

The quadratic sieve method, the numeric field 

sieve method and the elliptic curve method are the 

most effective among the subexponential factoriza-

tion algorithms. 

The scheme of the algorithm for the Pomerance 

quadratic sieve is presented in the following form. 

The first step is constructing  nyx mod22  , then 

checks the validity of inequality: 

  nnyxDCG  ,...1 . For this purpose we con-

sider the polynomial 

        nxHnnxxQ mod
22

 , where 

   nxxH  . Values of  xQ  at integer points 

are squares modulo n . Coefficients  xQ  small, 

close to 
2/1n . As a factor base S  is considered 

10 p  and all primes bpp ii ,  such that 

1










ip

n
. After that, calculating the values ix  

using some sieving, wherein ix  is the value for 

which   



Sp

ii
ipxQa


is true, thus  ixQ  de-

composes in the factor base [7]. Consequently, de-

noting  ii xHb  , concluding  nab ii mod2  , 

accumulated a sufficiently large number of such re-

lations, the elimination of variables is performed and 

the equation )(mod22 nyx   can be defined [7]. 

The method of a quadratic sieve with the use of 

several polynomials is an efficient and easily im-

plemented computer algorithm. It is the best known 

algorithm for the factorization of arbitrary numbers 

Nn , 
11010n , except for the method of factori-

zation by means of elliptic curves, which in some 

cases can work faster [7]. Algorithm requires 
   nno

eO
lnlnln11

 arithmetic operations by adopting 

a number of hypotheses about the distribution of 

prime numbers as a function of the number n  [7]. 

The number field sieve is the most effective 

factorization method for large numbers at the current 

time. In fact, the number field sieve is not an algo-

rithm. This is a calculation method that consists of 

several stages, which are served by several algo-

rithms. Detailed description of SNFS and GNFS are 

very extensive and all the principles and basics of 

these algorithms are described in details in the [9]. 

The complexity rating is equal to  cLn ;3/1  for 

some constant c [7]. 

Lenstra method overview 

We can distinguish the method of elliptic 

curves, which is the most perspective among the 

subexponential algorithms. It is based on the theory 

of elliptic curves. Lenstra has created this method of 

decomposition into prime factors and algorithms 

obtained on it suggest that for its further improve-

ment it is possible to create a much more efficient 

algorithm than the base ECM. An important feature 

of this algorithm is that its performance depends not 

on the number n  itself but on the smallest factor 

pF

only.  This  point  is  crucial  when  using  a  method  of 

elliptic  curves,  since  it  opens  new  opportunities  to 

use  it  in  complex with  other factorization algo- 

rithms. Such as the quadratic sieve method, which is 

also subexponential, but it works faster for numbers 

which divisors are large enough. The Lenstra meth- 

od  is  the  best  algorithm  for  finding  simple  divisors 

of  20-25  characters  per  length  [4].  However,  in  the 

case  of  using  RSA,  this  fact  is  a  significant  draw- 

back  of  this  method,  due  to  the  fact  that the  RSA 

algorithm  is  based  on  multiplying  of  two  large 

primes. Accordingly, the Lenstra method in this case 

is  not  optimal  for  the  cryptosystem  based  RSA  at- 

tack. 

 From the ideological point of view, the method 

of elliptic curves was created for the solution of cer- 

tain  classes  of  problems  in  classical  mathematical 

analysis.  From  a  conceptual  point  of  view,  elliptic 

curves can be considered over finite fields  , when 
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3p  - is primal odd number. The first results in 

this area were focused on solving problems in ab-

stract and numerical number theory. Later they were 

generalized to the case of fields of the form kp
F , 

when 1k . A lot of important results were ob-

tained for fields kF
2

. 

One of the valuable and laborious problems in 

the theory of elliptic curves is the problem of com-

puting the order of the group of an elliptic curve 

over a finite field. The set of points of an elliptic 

curve  pba FE ,  [10] for any finite field is given by:  

  









 


pFx

pba
p

baxx
pFE

3

, 1

 

(3). 

The computation of the elements of this set for 

large p  represents in the computational sense as a 

very labor-consuming problem. In the above expres-

sion 






 

p

baxx3

 is a Legendre’s symbol. The set 

 
pba FE ,  consists of points   pyx mod,  that lie 

on the given elliptic curve and one another corre-

spond to an infinitely distant point [10]. The Hasse 

theorem is an important result of the theory of ellip-

tic curves. According to this theorem, the following 

assertion is correct:  power of  kpba FE ,
 satisfies the 

inequality: 

  ppFEpp kpba 21#21 ,  , 

where   kpba FE ,#  - the number of points 

lying on a given elliptic curve, or in other words the 

power of a given curve, or the order of this curve.

 The arithmetic of elliptic curves allows us to 

state that if n - is a prime number the point at infini-

ty means a unique additional projective point on an 

elliptic curve that does not correspond to any affine 

point. If n  is composite number, then there are other 

projective points, which do not correspond to any 

affine point. Nevertheless, we will allow only one 

additional point that corresponds to the projective 

solution  0,1,0 . Due to this limitation in the defini-

n

tion  of  the  elliptic  curve  group,  the  pseudo-elliptic 

curve no longer forms a group with a  composite . 

It  is  easy  to  prove that  there  are  pairs  of  points 

Моделювання динамічних систем

P  

and Q , for which the sum QP   - is undefined. 

This explains by the structure of the angular coeffi-

cient: 























21

1

1

2

1

21

12

12

,
2

23

,

xxif
y

cxx

xxif
xx

yy

m


, 

where  11, yxP  ,  22 , yxQ  . 

The above results carry over to the elements of 

the set  nba ZE , , which differ from elliptic curves in 

the case when n  - is a composite number. In this 

case, the concept of elliptical pseudo-curve is used 

this curve defines by the conditions: 

1. nZba ,  

2.   1,... baDCG  

3.   1,274... 23  nbaDCG  

4.       ,:, 32

, ObaxxyZZyxZE nnnba   

where O - infinitely corresponded point. 

The curve in this case has the following form 

  baxxyZE n  32: . In a strict mathematical 

formulation, this curve is not considered as an ellip-

tic curve (such a curve is also called pseudo-curve), 

since pF  is not a field according to it the operations 

of finding the inverse element that are necessary to 

find the sum of the points of the curve are not al-

ways feasible in it. It goes from the impossibility of 

calculating the sum of two points  11, yxP  and 

 22 , yxQ , it turns out that the difference between 

the first coordinates 12 xx   must be equal to zero 

modulo one of the divisors of n , thus, computing 

the greatest common divisor G.C.D.  12, xxn  , 

there is a divisor of the given composite number [9]. 

Lenstra's algorithm is to select an arbitrary base 

point and pseudo curve  pba FE ,  0P  and to multi-

ply it subsequent by various prime numbers and 

their degrees until they get:  

 pkP mod0  , (4) 

where p – is one of the dividers of n . 

Since, none of the divisors of n  is known in 

advance, it is not possible to check whether condi-

tion (2) is satisfied. According to this fact, the sign 

of successful completion of the algorithm is the ful-
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fillment of condition    1,...  dсnDCG  in the 

doubling operation or addition of points in the calcu-

lation of the next multiple с  point 0P  when calcu-

lating the angular coefficient. 

Many cryptographic applications are based on 

the theory of elliptic curves. Typically, the general 

idea in these applications is that a known algorithm 

which makes use of certain finite groups is rewritten 

to use the groups of rational points of elliptic curves. 

Elliptic-curve Diffie–Hellman algorithm, Elliptic 

Curve Digital Signature Algorithm, EdDSA, Dual 

EC DRBG, Elliptic curve primality proving, Su-

persingular isogeny key exchange and many other 

algorithms using elliptic curves. 

ECM algorithm 

The algorithm can be represented in the follow-

ing form: 

The input is a composite number n , which 

must be decomposed into prime factors. 

1. The limit of the first stage 
1b  is chosen. 

2. A random curve  nba ZE ,  and a point on it 

with coordinates  yx,  are generated. 

Moreover, naxxyb mod32   and 

 23 274,... banDCGg  . Further, if 

ng  , then we have to return to the curve 

generation and if ng 1 , then a divisor 

is found. 

3. For every prime number 1bp   the greatest 

degree is determined i  such that 

1bp i

i 


. Then a loop is executed for all 

ij :1 , PpP i , as a result of which 

the point P  multiplies by ip


. Each mul-

tiplication by p  is performed using the el-

liptic multiplication algorithm: the addition-

subtraction scheme [10]. 

Remarks to ECM 

The computation continues until all the prime 

numbers that are less than 1b  will be passed, or until 

there will be no step on which condition 

  1,...  dPnDCG  is satisfied, that is signaling 

that  dnDCGg ,...  is nontrivial divisor. If the 

last condition is fulfilled, then the desired divisor of 

n  is found [11]. In another case, we increase 1b , or 

change the elliptic curve and repeat all over again. 

With the help of implemented in practice   pro-

gram by using the computer-programming language 

Java, the following results were achieved: with the 

smallest divisor 4 decimal digits long, the average 

work time is equal to 6.985 seconds, in 3 decimal 

places 1.4 seconds, in 2 decimal places 0.166 sec-

onds. In general, the results correspond to the 

subexponential estimation of the algorithm. 

There are different cases in the operation of  el-

liptic multiplication by pseudo-curve. The concrete 

case depends on the used chain of additions. So the 

point P5  can easily be calculated, when it is calcu-

lated by means of a chain PPPP 542  . 

However penultimate elliptic addition may not be 

feasible, even if the calculate of this point provides 

by a chain PPPP 532  . However, if two 

different chains that obtain kP  by additions are 

achievable, then an identical result is obtained in 

both cases [10]. 

Until now, all calculations have been performed 

by modulo n , i.e. after each operation when the re-

sult exceeds the value of ,n  the remainder of  the 

number dividing obtained by n  was taken as a re-

sult. In case when the coordinates of the obtained 

points are calculated by modulo p , which is a divi-

sor of n , we get the following condition for the suc-

cessful completion of the algorithm: 

kP , 




1Bp

i
i

i

ipk



 (4) 

and in this case the curve baxxy  32
 is con-

structed over a finite field pF . Let  
pFEl #  is 

the number of points of this curve. According to 

Hasse theorem     ppppl 21,21  . 

According to the fact that for every point  yxQ ,  

the condition  lQ  is satisfied, then, in order to 

ECM method to be successfully completed, it is nec-

essary that factor k  in (4) is divided by the order of 

the curve l . In the case when, all dividers l  do not 

exceed the boundaries 1b , the last condition is satis-

fied. For the successful completion of the algorithm, 

it is required that all dividers l  of kind 
p , except 

for the last one, were less than the border 1b , and 

the greatest divisor 


p  had degree 1  and was 

less than the border 2b  [11]. 

 ECM analysis 

The required boundary for the degrees of divi-

sors of l  depends on the  pba FE ,# , which is de-

a  

b

termined  by  the  coefficients  of  the  elliptic  curve 

and .  At  the  moment,  there  is  no  known  reliable 
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algorithm for choosing a curve with the smallest 

value of the maximum degree of the divisor of 

 
pba FE ,# . 

The number of performed arithmetic operations 

is estimated by the value: 
    

ne
pnpo 2ln;ln12

ln


, or 

 







2;

2

1
pL  at L-notation, where p  - the smallest 

divisor of a number n . L-notation, this is an asymp-

totic notation analogous to O-notation, that is used 

for the approximate estimation of computational 

complexity of the algorithm and is determined by 

the formula:        





1

lnln)(ln1, ppoc

p ecL , by 

p , where constc  ,   ;0c  and 

const ,  1;0 .  

Since the value of the factor p  is unknown the 

choice of the value 1b  is performed empirically. 

That definitely worsens the reliability of the practi-

cal estimate of the method convergence. Adding the 

second stage of computations to algorithm preserves 

the general asymptotic estimate and at the same time 

provides a large practical increase in the rate of con-

vergence of the method [11].  

It is important to research [7] the probability of 

finding a certain b -smooth number in the Hasse 

interval (in this case there are curves with a smooth 

number order). At the moment, it is not known 

whether there is always a smooth number in the in-

terval. The L-notation that based on the heuristic 

probabilistic methods of the Canfield-Erdoes-

Pomerance theorem [8], gives an estimate that in 

order to obtain a smooth order of the group it is suf-

ficient to take 






2;

2
2L  curves.  

According to frequent using of a random num-

ber generation (clauses 1 and 2 of the algorithm), it 

is critically important to use efficient pseudo-

random number generators. 

In addition, the algorithm uses a set of primes 

from the interval ];2[ 1b . Proceeding from this, the 

 naxxyb mod32 

1b

question  of  finding  prime numbers  in  a  given  inter- 

val remains to be opened (in the practical implemen- 

tation  of  the  method,  sieve  of  Eratosthenes was 

used). 

 The  question  of  correct  curve generation  is  re- 

mains to be opened. Due to the algorithm, it genera- 

tion has  random  a  character and the  condition 

 is  satisfied.  However, 

such  an  approach  cannot be  considered  as  accepta- 

ble.  Firstly  it  is  probable  that  the  given  curve will 

not be — -smooth. It is known that the base algo- 

Моделювання динамічних систем

rithm will not be able to detect the divisor in that 

case. This disadvantage can be compensated by us-

ing the second stage of the extended ECM algo-

rithm. However, such "optimization" leads to com-

putational complexity increase. An important task is 

to identify the optimal classes of elliptic curves for a 

given algorithm. It is important to investigate the 

possible relationship between elliptic curves and 

modular forms. It is still unknown if they are similar 

or fundamentally different structures. 

In comparison of the three considered subexpo-

nential methods (ECM, quadratic sieve QS method 

and NFS numerical field method), the dimension of 

the smallest divisor of the composite n  is the main 

trait. In the case when the number n  is chosen by 

the RSA method, which means that it is represented 

by the product of two prime numbers of the approx-

imately same length, then the elliptic curve method 

has a similar estimate with the quadratic sieve meth-

od, but is inferior to the sieve method of the numeric 

field.  In case when n  has a dimension that exceeds 

the record for QS and NFS methods, the only way to 

find a divisor of n  is factorization by Lenstra meth-

od [14]. 

Ways of the ECM optimization 

Due the fact that the Lenstra method is a child 

of the  1p  in some way it also has an extension 

in the form of a second stage. It is assumed that the 

order of  
pba FE ,#  is not equal to the smooth 1b , 

no matter what choice of the value 1b  is made,  on 

the basis of this, the base algorithm will not be able 

to detect the divisor. However, it is quite possible 

that 

  




11

,#
BP

ipba
i

i

ipqFE



 (5), 

where q  — is a prime number that greater than 1b . 

In the case where one out-of-bound prime number is 

a part of the unknown order factorization, there is no 

need to multiply the current point by every prime 

number from the interval ],( 1 qb . Instead of this it’s 

permitted to use point 

PpQ
BP

i
i

i

i














 

 11



 (6), 

which, in fact, remains after the first stage of the 

ECM algorithm, and the points 

      ,...,,, 100000 QqQqQq 
 
(7), 
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are tested, where 0q  — is the smallest prime that 

exceeds 1b , and i  — are differences between ad-

jacent prime numbers after 0q . Some points 

 QR ii 
 

(8), 

are stored to be used repeatedly, after which the 

specified prime numbers greater than 1b  are veri-

fied, by successive elliptic additions using the corre-

sponding  iR . The main advantage is that the multi-

plication of a point by a prime number q  requires 

 qO ln  elliptic operations, while addition by using 

a pre-computed point iR  is the only operation [11].  

Pollard 1p  algorithm is in fact the progenitor 

of the elliptic curves method [11], as was said earli-

er. The algorithm factorizes p , such that  1p - is 

a b -smooth for some small b . For any e , that is 

multiplicity to  1p , and for any  a , mutually 

prime with p  according to a small theorem of Fer-

mat, pa e mod1 . In this case  naDCG e ,1...   

is more likely to be a divisor of n [11]. However, the 

method does not work [11], if p  has large prime 

divisors. ECM in this case will work correctly, be-

cause the group of a random elliptic curve over a 

finite field pF   is used instead of considering a mul-

tiplicative group, over pF , order of which is always 

equal 1p ,. 

In addition to this optimization in the form of a 

"second stage" and its variants, there are a number of 

other ways to optimize the Lenstra method proposed 

by Crandall and Pomerance [14] such as: 

1. Special parameterization, in order to quickly 

obtain random curves.  

2. Selection curves which orders are divided by 

12 or 16 [15].  

3. Optimizing the arithmetic of large integers 

and in particular elliptic algebras, as an option, by 

using a fast Fourier transform (FFT). 

4. Fast algorithms applied to the second stage, 

for example "extended FFT", that is a scheme for 

calculating the values of a polynomial applied to sets 

of previously computed x -coordinates. 

In addition, due to the parallel implementation 

of ECM with distributed memory [16], an almost 

linear acceleration can be obtained. Thus, it becomes 

possible to obtain a large amount of computing 

power with the help of cloud computing provided by 

a variety of services, such as Amazon [17]. 

Also, the correct choice of boundaries nbb 1  

is important. In practice it makes possible to get the 

fastest running time of the algorithm. For the correct 

choice of such boundaries, the Brent’s table [15] is 

used. In this table the recommended boundary val-

ues for close numbers of a certain digit are indicated. 

Elliptic curves over finite fields are described in 

this work. The question about optimal structure of 

curve for this algorithm remains open. There are a 

great number of elliptic curve alternative representa-

tions. Such as: Hessian curve Edwards curve, Twist-

ed curve, Twisted Hessian curve, Twisted Edwards 

curve, Doubling-oriented Doche–Icart–Kohel curve, 

Tripling-oriented Doche–Icart–Kohel curve, Jacobi-

an curve, Montgomery curve and many others. Each 

of them should be considered.  

The construction of families of elliptic curves 

over the rational numbers Q  which have simultane-

ously  nontrivial  torsion  and  nontrivial  rank is  de- 

scribed in work [18]. These curves are then used to 

speed up the ECM algorithm. There also indicated a 

limited use of elliptic curves with complex multipli- 

cation. 

 However,  the  question  about  the  security  of 

cryptosystems based on the complexity of factoriza- 

tion remains  to  be  opened. It  does  due  to  existence 

of  quantum  computers  that  realize  the  substantiated 

quantum  Shore  factorization  algorithm  that  can 

solve the factorization problem in a polynomial time

[19]. 

 Conclusion 

 In  total,  you  can  get  a  significant  reduction  in 

the  algorithm  running  time. Proceeding  from  the 

foregoing, it is quite obvious that, in spite of a fairly 

good  estimate  of  the  operation  of  the  basic  ECM 

algorithm. It has a truly great potential for improve- 

ment  and  is  quite  worthy  of  the  title  of  one  of  the 

most  promising  factorization  algorithms. At  the 

same time, it is fairly simple to implement and clear 

to  understand. Although  the  ideas  of  each  of  these 

methods are clear, however, their exact implementa- 

tion  is  a  very  complex  process. Moreover,  it  is  im- 

portant to combine all the proposed methods so that 

the algorithm  to be the most effective. This work is 

the  first  step  towards  the  creation  and  implementa- 

tion  of  such  an  algorithm  combining  various  ideas 

for optimizing the basic ECM method. 

 Summing  up,  we  can  say  that  the  ECM  algo- 

rithm, due to its subexponential nature, is well appli- 
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cable  in  practice  and it  should  be  investigated  in 

more detail, due to its prospects in terms of optimi- 

zation. It  is  necessary  to  direct  as  much  effort  as 

possible  to  the  development  of  the  Lenstra  method 

for the reasons that the factorization problem is one 

of  the  fundamental  in  modern  mathematics  and 

number theory. It is important both in their theoreti- 

cal aspects and in the applied sense. 
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 АЛГОРИТМІЧНІ ПРОЦЕСИ ФАКТОРИЗАЦІЇ ВЕЛИКИХ ЧИСЕЛ, ЗАСНОВАНІ НА ТЕОРІЇ 
 ЕЛІПТИЧНИХ КРИВИХ 

 Востров Г. М., Дерменжи І. Д. 

 Одеський національний політехнічний університет, Одеса, Україна 

 Анотація. В даній роботі  розглядається проблема факторизації великих складових чисел та її 

 місце серед математичних та інформаційних наук, а також їх прикладних аспектів. Докладно опи- 
 саний взаємозв’язок  між  теорією  псевдопростих  чисел  і задачею  розкладання  числа  на  прості 

 множники.  Чітко відображена  залежність  сучасної  криптографії  від  вирішення  задачі  фактори- 
 зації, зокрема, фундаментальність даного питання для криптографічного алгоритму RSA на осно- 
 ві, якого створено велике число прикладних криптографічних програм. Дана класифікація сучасних 

 методів  декомпозиції чисел. Описані причини для дослідження кожного с класів.  Приведено алго- 
 ритм  метода  Полларда  і  його  аналіз,  оскільки  він  являється  деякого  роду  прародителем  методу 
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еліптичних  кривих  (метода  Ленстри),  який  безпосередньо  розглядається  у статті.  Серед  субекс- 
поненційних методів виділені: «Метод квадратичного решета», та «Метод решета числового по- 
ля», як одні з найшвидших, дана їх коротка характеристика, оцінка обчислювальної складності та 

порівняльний аналіз між собою та методом Ленстри. Детально описані основи метода Ленстри, а 

також ідеї на яких він базується, названі головні особливості математичних операцій на еліптич- 
них кривих і властивості еліптичних кривих як математичних об’єктів, які надають можливість 

використовувати  їх  з  цілю  факторизації.  Детально  по  крокам  описаний сам  алгоритм  методу. 
Приведені  результати  розкладу  великих  складових  чисел,  отримані  з  допомогою  реалізованої  на 

практиці  програми.  Метод  ретельно  проаналізований, дана  його  обчислювальна  оцінка,  описані 

умови його збіжності. Названі фундаментальні проблеми алгоритму, які підлягають обов’язковому 

та найскорішому вирішенню, важливе місце серед яких займають: проблема вибору кривої, пробле- 
ма генерації псевдовипадкових послідовностей, проблема пошуку гладких чисел. Викладені можливі 

варіанти  оптимізації, зокрема,  оптимізація  аналогічна  тій,  що  приводиться  в  методі  Поларда  у 

якості  другої  стадії.  Поставлено  питання  щодо  взаємодії  таких  способів  оптимізації  алгоритму 

та можливої реалізації. Підкреслена та обґрунтована перспективність методу еліптичних кривих 

в  порівнянні  з  іншими  сучасними  методами  факторизації. Описані  пріоритетні  шляхи  вирішення 

проблеми факторизації. 
 Ключові  слова: криптосистема,  факторизація,  еліптична  крива,  гладкі  числа,  складові  числа, 

псевдопрості числа, псевдо-крива, кінцеве поле. 

 АЛГОРИТМИЧЕСКИЕ ПРОЦЕССЫ ФАКТОРИЗАЦИИ БОЛЬШИХ ЧИСЕЛ, 

 ОСНОВАННЫЕ НА ТЕОРИИ ЭЛЛИПТИЧЕСКИХ КРИВЫХ 

 Востров Г. Н., Дерменжи И. Д. 

 Одесский национальный политехнический университет, Одесса, Украина 

 Аннотация. В данной работе рассматривается проблема факторизации составных чисел. Бы- 
ли описаны различные методы решения этой проблемы, а также приведены их сравнительные ха- 
рактеристики.  Алгоритм  метода  Ленстры  был  проанализирован  и  подробно  описан.  Приведены 

результаты его работы. Даны способы его оптимизации. 
 Ключевые слова: криптосистема, факторизация, эллиптическая кривая, гладкие числа, состав- 

ные числа, псевдопростые числа, псевдокривая, конечное поле.
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