Scientific and Technical Journal

ELECTROTECHNIC AND COMPUTER SYSTEMS

ISSN Print 2221-3937
ISSN Online 2221-3805
PSEUDORANDOM PROCESSES OF THE NUMBER SEQUENCE GENERATION
Abstract:

This work investigates problems that occur in modeling of the nonlinear processes and number sequence generation. Dependences of iterative fixed points of nonlinear maps on the function properties and number properties from the functions domain are investigated. This work also analyze prime and sequences obtained using these numbers.

Authors:
Keywords
DOI
http://dx.doi.org/ 10.15276/eltecs.27.103.2018.27
References

1. Crandall R., Pomerance К. (2005). Prime numbers: cryptographic and computational aspects.2nd edition. Springer. p. 597.

2. Balasubramanian, V., Ho, S. and Vovk, V. (2014). Conformal Prediction for Reliable Machine Learning. Morgan Kaufmann. p. 299.

3. Probability and the concept of randomness: to the 75th anniversary of the publication of Kolmogorov's monograph "Basic concepts of probability theory" [Verojatnost' i koncepcija sluchajnosti: k 75-letiju vyhoda v svet monografii A.N. Kolmogorova «Osnovnye ponjatija teorii verojatnostej»]. (2009). p. 92.

4. Hirsch, M., Smale, S. and Devaney, R. (2013). Differential equations, dynamical systems, and an introduction to chaos. Amsterdam: Academic Press. p. 423.

5. Vostrov, G., Opiata, R. (2017). Effective computability of dynamic system structure of prime number formation [Effektivnaya vychislimost' struktury dinamicheskikh sistem formirovaniya prostykh chisel]. ELTECS, 244

6. Sharkovsky, A. (1988). Attractors of trajectories and their pools [Attraktory traektorij i ih bassejny]. Kyiv: «Scientific book». p. 322.

7. Schuster, H. (1995). Deterministic chaos. Weinheim: VCH. p. 320.

Published:
Last download:
30 Apr 2019

[ © KarelWintersky ] [ All articles ] [ All authors ]
[ © Odessa National Polytechnic University, 2014-2018. Any use of information from the site is possible only under the condition that the source link! ]