Scientific and Technical Journal


ISSN Print 2221-3937
ISSN Online 2221-3805

Examined the design features and principles for constructing electromechanical converters of technological purpose.The aim of the work is to consider the existing designs of electromechanical converters used to directly effect a mechanical action on a substance, its heating, transportation, and the like. It is important to determine the design features and principles of constructing such converters to further improve the methodology for creating a number of electromechanical screw-type converters for energy-saving technologies for the processing of various substances, biomass and technogenic waste.It is possible to significantly increase the heat output in comparison with the considered constructions due to the full utilization of the losses of the electromagnetic system and also by creating an efficient heat exchange system "heat-generating units - cooling medium", which performs the functions of directing heat energy into the technological zone of material heating and ensuring permissible overheating of electrical insulation.The review of existing designs of electromechanical converters of technological design showed that combining in one engine block, actuator and heater allows to consider these devices as a new type of converters, whose efficient operation is related to the need to solve a number of completely new tasks and is impossible without the adoption of experience and principles of designing technological installations for heating, processing and transporting substances.

  1. Кim, К. К. (2013) “Energy-saving electric heating system” [Energosberegayushchaya sistema elektrootopleniya], Proceedings of Petersburg Transport University, St. Petersburg, pp. 84-89, available at: sberegayuschaya-sistema-elektrootopleniya
  2. Prikhodchenko, O. V., Prosolovich, A. A., Prikhodchenko, I. A. (2012) “Modeling of pressure elements of electromechanical pumping devices in the system T-FLEX CAD” [Modelirovanie napornykh elementov elektromekhanicheskikh perekachivayushchikh ustroystv v sisteme system T-FLEX CAD], CAD and graphics, Moscow,           pp. 88−91, available at: 1826.pdf
  3. Kim, K. K., Ivanov, S. N., Ukhanov, S. V. (2009) “Heat-generating electromechanical converter” [Teplogeneriruyushchiy elektromekhanicheskiy preobrazovatel'], available at:
  4. Kutsevalov, V. I. (1966) “Questions of the theory and calculation of asynchronous machines with massive rotors” [Voprosy teorii i rascheta asinkhronnykh mashin s massivnymi rotorami], Energiya, Moscow-Leningrad, 302 p.
  5. Gaytov, B. Kh., Kopelevich, L. Ye., Pismenny, V. Ya., Pautov, G. A, Sapyan, A. A, Gaytova, T. B. (1977) “Engine-pump for pumping petroleum products” [Dvigatel'-nasos dlya perekachki nefteproduktov], available at:
  6. Stavinsky, A. A., Palchikov, O. O. (2015) “Target functions of the comparative analysis of the energy efficiency of electromagnetic systems of induction motors with internal and external rotors” [Tselevye funktsii sravnitel'nogo analiza energeticheskoy effektivnosti elektromagnitnykh sistem asinkhronnykh dvigateley s vnutrennimi i vneshnimi rotorami], Electrical Engineering & Electromechanics, Kharkiv, pp. 41−45, available at:
  7. Stavinsky, A. A., Palchikov, O. O. (2015) “Asynchronous motors with sectionalized internal and external rotors for driving gas and liquid superchargers” [Asinkhronnye dvigateli s sektsionirovannymi vnutrennimi i vneshnimi rotorami dlya privoda gazovykh i zhidkostnykh nagnetateley], Visnyk of the National Technical University, Kharkiv, pp. 85−90, available at:
  8. Shinkarenko, V. F., Naniy, V. V., Kotlyarova, V. V., Dunev, A. A., Egorov, A. V. (2014) “Features of identification of genetic information in electromechanical motion transducers such as "screw - nut"” [Osobennosti identifikatsii geneticheskoy informatsii v elektromekhanicheskikh preobrazovatelyakh dvizheniya tipa «vint – gayka»], NTU "KPI", Kharkiv, pp. 156−160, available at:
  9. Moskvitin, A. I. (1947) “Electric machines with rolling rotor” [Elektricheskie mashiny s katyashchimsya rotorom], Elektrichestvo, Moscow, pp. 5−9.
  10. Szczygieł, M. (2016) Rotary-linear induction motor based on the standard 3-phase squirrel cage induction motor–constructional and technological features / M. Szczygieł, K. Kluszczyński // Czasopismo Techniczne. Elektrotechnika, pp. 395−406, available at: php/Cz/article/viewFile/5531/pdf_247
  11. Amiri, E. (2014) Circuit modeling of double-armature rotary-linear induction motor / Amiri E. // IECON 2014-40th Annual Conference of the IEEE Industrial Electronics Society. – IEEE, pp. 431−436, available at:
  12. Gieras, J. F. (2012) Performance calculation for a high-speed solid-rotor induction motor / J. F. Gieras, J. Saari // IEEE transactions on industrial electronics, pp. 2689−2700, available at: 29054d063c4330167584.pdf
  13. Aho, T. (2007) Experimental and finite element analysis of solid rotor end effects / T. Aho, J. Nerg, J. Pyrhonen // Industrial Electronics, 2007. IEEE International Symposium on. – IEEE, pp. 1242−1247, available at:
  14. Papini, L., Gerada, C. (2014) Analytical-numerical modelling of solid rotor induction machine // Electrimacs, pp. 121−126.
  15. Zablodskiy, N. (2016) Polyfunctional electromechanical energy transformers for technological purposes. / N. Zablodskiy, V. Plyugin, V. Gritsyuk // Russian Electrical Engineering, Moscow, pp. 140−144, available at:
Last download:
7 Dec 2019

[ © KarelWintersky ] [ All articles ] [ All authors ]
[ © Odessa National Polytechnic University, 2014-2018. Any use of information from the site is possible only under the condition that the source link! ]