Scientific and Technical Journal


ISSN Print 2221-3937
ISSN Online 2221-3805
We consider probability-temporal models of attacks on computer networks resources provided by Petri-Markov nets. Identified the main parameters that determine the probability of the considered attacks. Analyzed the shortcomings of these methods of risk analysis information system. To eliminate them, proposed to use fuzzy logic and fuzzy inference. This approach allows us to build a model of the attack close to real conditions, and to identify patterns of occurrence of these attacks.

1. Radko N.M., and Skobelev I.O. Risk-modeli informatsionno-telekommunikatsion-nyih sistem pri realizatsii ugroz udalennogo i neposredstvennogo dostupa  [Risk Model for Information and Telecommunication systems in the Realization of threats Remote and Immediate Access], (2010), Moscow, Russian Federation,  RadioSoft, 232 p. [In Russian].

2. Shaporin V.O., Tishin P.M., Kopytchuk N.B, and Shaporin R.O. Nechetkie lingvisticheskie modeli obespecheniya bezopasnosti kompyuternyih setey [Fuzzy Linguistic Models of Computer Network Security]. Modern Information and Electronic Technologies: 14th International Scientific and Practical Conference, (2013), Odessa, Ukraine, pp. 155  – 156 (In Russian).

3. Larkin E.V. Imitatsionnoe modelirovanie otkazov–vosstanovleniy s primeneniem setey Petri–Markova [Simulation of Fault-recoveries Using Petri–Markov nets], (2006),  Bulletin of Computer and Information Technologies, Moscow, Russian Federation, Publishing house Spectrum, No. 12, pp. 35 – 38 (In Russian).

4. Larkin E.V., Sokolov V.A., V.V. Kotov, and N.A. Kotov. Formatyi dannyih dlya strukturno–parametricheskogo opisaniya setey Petri–Markova [Data Formats for Structural and Parametric Description of Petri–Markov nets], (2008), Moscow, Russian Federation, Successes of Modern Natural Science Academy of Natural Sciences, No. 1, pp. 43 – 47 (In Russian).

5. Zadeh L.A. Fuzzy Logic = Computing with Words, (1996), IEEE Trans. on Fuzzy Systems, IEEE Computational Intelligence Society, Vol. 4,pp. 103 – 111 (In English).

6. Zadeh L.A. Toward a theory of Fuzzy Information Granulation and its Centrality in Human Reasoning and Fuzzy Logic, (1997), Fuzzy Sets and Systems, International Fuzzy Systems Association, рр. 111 – 127 (In English).

7. Zadeh L.A. From Computing with Numbers to Computing with Words – from Manipulation of Measurements to Manipulation of Perceptions, (1999), IEEE Trans. on Circuits and Systems–1: Fundamental Theory and Applications, pp. 105 – 119 [In English].

8. Jang J.-S.R., Sun C.T., and Mizutani E.A. Computational Approach to Learning and Machine Intelligence, (1997), Neuro-Fuzzy and Soft Computing. Prentice-Hall International, 640 p. (In English).

9. Batirshin I.Z. Parametricheskie klassyi nechetkih kon'yunktsiy v zadachah optimizatsii nechetkih modeley [Parametric Classes of Fuzzy Conjunctions in Problems of Optimization of Fuzzy Models], (2000), Research in Informatics, Kazan, Russian Federation, Otechestvo Publ., No. 2, pp. 63 – 70 (In Russian).

10. Batirshin I.Z., and Motygullin A.E. Optimizatsiya nechetkih modeley Mamdani po parametram operatsiy [Optimization of Mamdani Fuzzy Models in the Parameters of Operations], (2000), Research in Informatics, Kazan, Russian Federation, Otechestvo Publ.,  pp. 71 – 76 (In Russian).

11. Salimov A.H., and Batirshin I.Z. Postroenie neyro-nechetkih modeley Sugeno s parametricheskimi operatsiyami [The Construction of Neuro–Sugeno Fuzzy Models with Parametric Operations], (2001), Research in Informatics, Kazan, Russian Federation, Otechestvo Publ., pp. 97 – 104 [In Russian].

Last download:
30 May 2020

[ © KarelWintersky ] [ All articles ] [ All authors ]
[ © Odessa National Polytechnic University, 2014-2018. Any use of information from the site is possible only under the condition that the source link! ]