Scientific and Technical Journal


ISSN Print 2221-3937
ISSN Online 2221-3805
A hybrid artificial neural network is proposed in the present paper. The network combines the principle of kernel systems and self-learning, and is based on radial basis neural networks and self-organizing maps. The proposed system allows to solve the problem of on-line clustering under the conditions, when the classes formed by the initial data have an arbitrary form.
  1. Rutkowski, L. (2008) Computational Intelligence. Methods and Techniques. Springer-Verlag. Berlin. Heidelberg. p. 514.
  2. Kruse, R., Borgelt C., Klawonn F., Moewes C., Steinbrecher M., Held P. (2013) Computational Intelligence. A Methodological Introduction. Springer. Berlin. p. 488.
  3. Haykin, S. (1999) Neural Networks. A Comprehensive Foundation. Upper Saddle River, N.J.: Prentice Hall, Inc. p. 842.
  4. Du, K. - L., M. N. S. Swamy (2014) Neural Networks and Statistical Learning. Springer - Verlag. London. p. 824.
  5. Kohonen T. (1995) Self-Organizing Maps. Springer-Verlag. Berlin. p.362.
  6. Höppner F. Klawonn F., Kruse R. (1996) Fuzzy-Clusteranalyse. Verfahren für die Bilderkennung, Klassifikation und Datenanalyse. Vieweg. Braunschweig. s. 280.
  7. Höppner, F., Klawonn F., Kruse R., Runkler T. (1999) Fuzzy Cluster Analysis: Methods for Classification, Data Analysis and Image Recognition. John Wiley & Sons. Chichester. p.289.
  8. Tsao, E.C.-K., Bezdek J.C, Tsao, J.C., Pal N.R. (1994) Fuzzy Kohonen clustering networks. Pattern Recognition. 27. pp.757–764.
  9. Pascual – Marqui R. D., Pascual – Montano A.D., Kochi K., Caroso J.M. (2001) Smoothly distributed fuzzy C-means: a new self-organizing map. Pattern Recognition. 34.           pp. 2395–2402.
  10. Bodyanskiy Ye., Kolodyazhniy V., Stephan A. (2002) Recursive fuzzy clustering algorithms. Proc. East West Fuzzy Coll. Zittau-Görlitz: HS. pp. 164-172.
  11. Dejneko A.O., Dejneko Zh.V., Dejne-ko O.P., Turuta O.P., Bodjanskij E.V. Metod kombіnovanogo navchannja-samonavchannja nejro-fazzі sistem. Sistemnі tehnologії. [Adaptive method of combining learning-selflearning for neuro-fuzzy systems] (2014) Regіonal'nij mіzhvuzіvs'kij zbіrnik naukovih prac'. № 2(91). pp. 145 – 153. (In Ukrainian)
  12. Bezdek, J. - C. (1981) Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press. N.Y. p. 272.
  13. Kaufman L., Rousseeuw P. (1989) Finding Groups in Data. John Wiley & Sons. N.Y. p.320.
  14. Xu, R., Wunsch D.C. (2009) Clustering. IEEE Press Series on Computational Intelligence. Hoboken, NJ:John Wiley & Sons, Inc. p. 370.
  15. Gan G., Ma Ch, Wu J (2007) Data Clustering: Theory, Algorithms and Applications. Philadelphia, Pennsilvania: SIAM. p. 455.
  16. Jain A. K., Dubes R. C. (1988) Algorithms for Clustering Data. Englewood Cliffs, N.J.: Prentice-Hall. p. 318.
  17. Han, J., M. Kamber (2006) Data Mining: Concepts and Techniques. Amsterdam: Morgan Kaufmann Publ. p. 754.
  18. Abonyi, J., Feil B. (2007) Cluster Analysis for Data Mining and System Identification. Basel: Birkhauser. p. 303.
  19. Olson, D. L., Dursun D. (2008) Advanced Data Mining Techniques. Berlin: Springer. p. 180.
  20. Bifet, A. (2010) Adaptive Stream Mining: Pattern Learning and Mining from Evolving Data Streams. IOS Press. p. 224.
  21. MacDonald D., Fyfe C. (2002) Clustering in data space and feature space. ESANN'2002 Proc. European Symp. on Artificial Neural Networks. Bruges (Belgium), 24-26 April. pp. 137-142.
  22. Girolami, M. (2002) Mercer kernel-based clustering in feature space. IEEE Trans. on Neural Networks. 13. №3. pp. 780-784.
  23. Camastra, F., Verri A (2005) A novel kernel method for clustering. IEEE Trans. on Pattern Analysis and Machine Intelligence. No. 5. pp. 801-805.
  24. Schölkopf  B., Smola A. (2002) Learning with Kernels. Cambridge, M.A.: MIT Press. – 2002.
  25. Ajzerman, M. A., Braverman Je. M., Rozonojer L. I. Metod potencial'nyh funkcij v teorii obuchenija mashin. [Theoretical foundation of potential functions method in pattern recognition learning] (1970) M.: Nauka. p. 384. (In Russian).
  26. Vapnik V.N., Chervonenkis A.Ja. Teorija raspoznavanija obrazov (statisticheskie problemy obuchenija). [The Nature of Statistical Learning Theory.] (1974) M.: Nauka. p. 416. (In Russian).
  27. Cortes, C., Vapnik V. (1995) Support Vector Networks. Machine Learning. 20. pp. 273–297.
  28. Suykens J.A.K., Gestel, T.V., Brabanter J.D., Moor B.D., Vandewalle J. (2002) Least Squares Support Vector Machines. Singapore: World Scientific. p. 294.
  29. Moody J., Darken C.J. (1989) Fast learning in networks of locally-tuned processing units. Neural Computation. pp.281-294.
  30. Park J., Sandberg I. W. (1991) Universal approximation using radial-basis-function networks. Neural Computation. 3. pp.246-257.
  31. Poggio T., Girosi F., Memo A.I. (1994) A Theory of Networks for Approximation and Learning. № 1140, C.B.I.P. Paper № 31. – Massachussetts Institute of Technology. p. 63.
  32. Cover T. M. (1965) Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition. IEEE Trans. on Electronic Computers. 14. pp. 326-334.
  33. Zahirniak D., Chapman R., Rogers S., Suter B., Kabrisky M., Piati V. (1990) Pattern recognition using radial basis function network. Proc 6th Ann. Aerospace Application of Artificial Intelligence Conf. – Dayton, OH. pp. 249-260.
  34. Ljung, L. (1999) System Identification: Theory for the Users. N.Y.: Prentice-Hall.p. 519.
  35. Bodjanskij E.V., Pliss I.P., Solov'eva T.V. Adaptivnoe obobshhennoe prognozirovanie mnogomernyh sluchajyh posledovatel'nostej. [Adaptive generalized forecasting of multivariable random sequences] (1989), Doklady AN USSR. A. №9. pp. 73-75. (In Russian).
Last download:
13 May 2020

[ © KarelWintersky ] [ All articles ] [ All authors ]
[ © Odessa National Polytechnic University, 2014-2018. Any use of information from the site is possible only under the condition that the source link! ]