Scientific and Technical Journal


ISSN Print 2221-3937
ISSN Online 2221-3805

The purpose of the work is to improve the quality of control of a synchronous motor with permanent magnets in a parametric and coordinate disturbances. Laws control a synchronous motor is designed based on the concept of the inverse problem of dynamics, combined with minimization of functional local instantaneous values ​​of energy. The method is based on the idea of ​​reversibility of Lyapunov's direct method for studying the stability that allows you to find control laws, under which a closed loop is deliberately given a Lyapunov function. As a Lyapunov function performs the instantaneous energy. A characteristic feature of optimization are not achieving an absolute minimum of the functional quality as in classical systems, and a minimum value, which provides the technical requirements for the allowable time error of the system. It provides a dynamic decomposition of the interconnected system to independent local control loops, and low sensitivity to changes in the parameters of the drive. Easy to implement control laws conditioned by the lack of differentiation.


  1. Uzel D., and Peroutka Z., (2011), Optimal Control and Identification of Model Parameters of Traction Interior Permanent Magnet Synchronous Motor Drive, In 37th Annual Conference of the IEEE Industrial-Electronics-Society (IECON), Melbourne, Australia, pp. 1960 – 1965.
  2. Sant A.V., and Rajagopal K.R., (2009), PM Synchronous Motor Speed Control using Hybrid Fuzzy PI with Novel Switching Functions, IEEE Trans. Mag., Vol. 45, No. 10, pp. 4672 – 4675.
  3. Tang L., Zhong L., Rahman M.F., and Hu Y., (2003), A Novel Direct Torque Control for Interior Permanent-magnet Synchronous Machine Drive with Low Ripple in Torque and Flux a Speed-sensorless Approach, IEEE Transaction Industry Application, (39), pp. 1748 –1756.
  4. Baik I.C., Kim K.H., and Youn M.J., (2000), Robust Nonlinear Speed Control of PM Synchronous Motor using Boundary Layer Integral Sliding Mode Control Technique, IEEE Transactions on Control Systems Technology, 8(1), pp. 47 – 54.
  5. Guchuan Zhu, Louis-A.Dessaint, and Ouassima Akhrif, (2000), Speed Tracking Control of a Permanent-Magnet Synchronous Motor with State and Load Torque Observer, IEEE Transactions on Industrial Electronics, 47(2), pp. 346 – 355.
  6. Potapenko E.M., and Kazurova A.E. Vysokotochnoe upravlenie neopredelennymi obektami. Sravnenie metodov upravleniya [Precision Control Uncertain Objects. Comparison of Methods of Control], (2007), Sb. Nauchn. Trud. Dneprodzerzhinskogo Gos. Texn. Univer-ta, pp. 353 – 356 (In Russian).
  7. Krut’ko P.D. Robastnoustojchivyestrukturyupravlyaemyxsistemvysokojdinamicheskojtochnosti. Algoritmy i dinamika upravleniya dvizheniem modelnyx obektov [Robustly Stable Structures of Control Systems of High Dynamic Precision. Algorithms and Dynamics of Control of Model Objects], (2005), Izvestija RAN. TiSU, Vol. 2, pp. 120 – 140 (In Russian).
  8. Ostroverkhov N., and Buryk N. Upravlenie koordinatami elektroprivodov na osnovanii koncepcii obratnyx zadach dinamiki pri minimizacii lokalnyx funkcionalov mgnovennyx znachenij energij [Сontrol of Coordinates Electric Drives Based on the Concept of Inverse Dynamics Problems for Minimization Local Functionals Momentary Values of Energy],(2011), Elektrotehnika i Elektroenergetika, Vol. 1, pp. 41 – 49 (In Russian).
  9. Ostroverkhov N.J. Metod sinteza regulyatorov elektromehanicheskih sistem na osnovanii kontseptsii obratnyih zadach dinamiki v soedinenii s minimizatsiey lokalnyih funktsionalov mgnovennyih znacheniy energiy dvizheniya [Method for the Synthesis of Regulators of Electromechanical Systems Based on of the Concept of Inverse Problems of Dynamics in Combination with the Minimization of Local Functional of the Instantaneous Motion Energy Values], (2008), Vestnik NTU “KPI”, Vol. 30, pp. 105 – 100 (In Russian).
  10. Chernousko F. Dekompoziciya i suboptimalnoe upravleniya v dinamicheskix sistemax [Decomposition and Suboptimum Control in Dynamic Systems],(1990), PMM, Vol. 6, pp. 883 – 893 (In Russian).
Last download:
12 July 2020

[ © KarelWintersky ] [ All articles ] [ All authors ]
[ © Odessa National Polytechnic University, 2014-2018. Any use of information from the site is possible only under the condition that the source link! ]