Scientific and Technical Journal


ISSN Print 2221-3937
ISSN Online 2221-3805

In paper by finite element method performed mathematical modeling interconnected electromagnetic and thermal processes in electromechanical transducers with magnetic-fluid filling. The dependence of the magnetic induction and distribution of current density in an active portion of the electromechanical transducer filled with magnetic fluid. The results of calculation of the electromagnetic field of the induction motor serial indicate the feasibility of the magnetic fluid in the gap of an induction machine with a classical design. The results of calculation of the thermal field submersible transducer with magnetic fluid filling indicate a high level of specific heat release in its active part. The surface temperature of the rotor in the stop mode, a current value reaches 160-170 oC. Temperature heated by the environment near the rotor surface – 145-155 oC. Electromagnetic torque value calculation suggests that the resultant torque to the two cylindrical portions of the rotor submersible transducer increases by 9 % (156 H∙m) in comparison with an embodiment without the magnetic fluid filling (143 N∙m).

  1. Zablodsky N.N. Polifunktsionalnye elektromehanicheskie preobrazovateli tehnologicheskogo naznacheniya [PolyfunctionalElectromechanical Converters Technological Purpose], (2008), Monografiya, Alchevsk, Ukraine, 340 p. (In Russian).
  2. Pat. 39226 Ukraine, МПК H05B 6/10. Submersible Electric Heater [Zablodskiy N.N., Veremeenko V.I., and Bondarev V.M.; Applicant and Patentee Donbas’s State Technical University, No. 98031637; Declared 31.03.1998; Published 15.06.2001, Bul. No. 5 (In Russian).
  3. Makarov V.M., Kalaeva S.Z., and Shipilin A.M. Pererabotka zhelezosoderzhaschih othodov s polucheniem nanochastits dlya izgotovleniya magnitnoy zhidkosti [Processing Wastes to Produce iron Nanoparticles for Manufacturing Magnetic Fluid], (2004), Nanotehnika, Vol. 12, pp. 66 – 69 (In Russian).
  4. Scherer C., and Figueiredo Neto A.M.,(2005), Ferrofluids: Properties and Applications,Brazilian J. Phys.. V. 35. pp. 718 – 727(In English).
  5. Lavrov A.G., and Shchukin A.V. Magnitnoe pole i parametry asinhronnogo dvigatelya s magnitozhidkostnym zapolneniem [Magnetic Field and the Parameters of Induction Motor with Magnetic Fluid Filling], (1988), Elektrotehnika,Vol. 10, pp. 7 – 10 (In Russian).
  6. AvramchukA.Z., Mikhalev Y.O., and Orlov D.V. Svoystvaiperspektivyprimeneniyaferrozhidkosteyvelektromashinostroenii [Propertiesand Prospects of Ferrofluidsin Electrical], (1981), Elektrotehnicheskaya Promyshlennost. Elektricheskie Mashiny, Vol 2, pp. 1 – 3 (In Russian).
  7. DegtyarevaE.L., and Potapov L.A. Issledovaniemehanicheskihharakteristikelektricheskoymashinysmassivnymferromagnitnymrotorom [Studythe Mechanical Characteristics ofthe Electric Machinewith a Massive Ferromagnetic Rotor], (1998),Izv. Vuzov. Elektromehanika, Vol 2, pp. 23 – 27 (In Russian).
  8. StepanovA.E., and Sikora R.A. Modelirovanieelektromagnitnyhpoleyvelektrotehnicheskihustroystvah[Simulationof Electromagnetic Fieldsin Electrical Devices], (1990),Kiev, Ukraine,Tehnika, 190 p. (In Russian).
  9. VaskovskyYu.N. Polevoyanalizelektricheskihmachin[Field Analysisof Electric Machines], (2007),NTU “KPI”, Ukraine, 191p. (In Ukrainian).
  10. Isachenko V.P., Osipova V.A., and Sukomel A. S. Teploperedacha [Heat Transfer], (1969), Moscow, Russian Federation, Energiya, 440 p. (In Russian).
  11. FilippovI.F.Teploobmenvelektricheskihmashinah [Heat Transferin Electrical Machines], (1986),Energoatomizdat, 255 p. (In Russian).
Last download:
8 July 2020

[ © KarelWintersky ] [ All articles ] [ All authors ]
[ © Odessa National Polytechnic University, 2014-2018. Any use of information from the site is possible only under the condition that the source link! ]