Scientific and Technical Journal


ISSN Print 2221-3937
ISSN Online 2221-3805

This paper presents the velocity control system design for overhead crane gantry drives, which allows the suppression of elastic horizontal vibrations of its structure. During the design process an assumption is made that the plant can be approximated with sufficient accuracy via the three-mass mechanical system, its parameters being calculated so that the transient responses would match the simulation results of the finite-element model from Comsol Multiphysics software. A dual-channel velocity cascade control system with additional feedbacks of velocity differences between gantry wheels and trolley was designed to suppress the elastic structure vibrations. The efficiency of presented approach was verified via finite-element software simulation. The acquired results indicate that it is possible to achieve efficient vibrations cancellation of an overhead crane structure by means of electric drive.

1. Ilharfi A. Control Design of an Overhead crane System from the Perspective of Stabilizing Undesired Oscillations, (2011), IMA Journal of Mathematical Control and Information Publ., 28, – рр. 267 – 278.
2. Moustafa K.A.F., Gad E.H., El-Monerr A.M.A., and Ismail M.I.S. Modeling and Control of Overhead Cranes with Flexible Variable-length Cable by Finite-element Method, (2005), Transactions of the Institute of Measurement and Con-trol, 27, 1, pp. 1 – 20.
3. Singhose W., Porter L., Kenison M. and Kriikku E. Effects of Hoisting on the Input Shaping Control of Gantry Cranes, (2000), Control Engineering Practice Publ., 8, pp. 1159 –1165.
4. Buch A., Palis F., Schwarzkopf A., and Albrecht K. Regelung Schwingungsfähiger Systeme höherer Ordnung, (1997), Proc. Moderne Methoden der Regelungs- und Steuerungsentwurfs, Magdeburg, Germany, pp. 123 – 129.
5. Palis F., and Lehnert M. Motion Control of of crane Drives by Fuzzy-controller, (1992), Proc. ED&PE 1992, In-ternational Conference on Power Electronics and Electrical Drives, Vol. 2, CSFR, 14–16 September 1992, pp. 297 – 301.
6. Prins G. Dynamisches Verhalten großer Verladebrücken, (1979), Fördern und Heben 29, (1979), Teil 1, No. 11, pp. 996 – 1001, Teil 2, No. 12, pp. 1111 – 1113.
7. Yazid E., Parman S., and Fuad K. Open-loop Responses of Flexible Gantry Crane System, (2011), Journal of Ap-plied Sciences Publ., 11 (10), pp. 1716 – 1724.
8. Pietryga U. Aktuelle Trends in der Entwicklung von Ship-to-Shore (STS) Containercrane, (2011), 19 Internationa-le Kranfachtagung – Magdeburg, Germany, pp. 128 – 140.
9. Recktenwald A. Aktiver Schwingungsdämpfer für Krane, (2011), 19 Internationale Kranfachtagung. – Magdeburg, Germany, pp. 142 – 146.
10. Garcia-Herreros I., Kestelyn X., Gomand J., Coleman R., and Barre P.-J. Model Based Decoupling Control Method for Dual Drive Gantry Stages: A case Study with Experimental Validations, (2013), Control Engineering Practice Publ., 21, pp. 298 – 307.
11. Hannover H.-O. Schwingungen an Krananlagen und deren Auswirkung auf Funktions- und Bedienungskomfort, (1978), Integration von Maschinen-und Stahlbau, Fachtagung TU Karlsruhe, pp. 162 – 185.
12. Tolochko O.I., Palis F., and Bazhutin D.V. Gashenie gorizontal'nykh uprugikh ko¬lebanii konstruktsii mostovogo krana [Suppressing the Horizontal Elastic Vibrations of an Overhead Crane Structure], (2012), Elektromekhanіchnі і Energozberіgayuchі Sistemi. Tematichnii Vipusk “Problemi Avtomatizovanogo Elektroprivoda. Teorіya і Praktika”, Kre-menchuk, Ukraine, Kremenchuk National University, Vol. 3/2012 (19), pp. 336 – 339 (In Russian).
13. Palis F., Tolochko O.I., and Bazhutin D.V. Analiz poperechnykh kolebaniy mostovogo krana pri izmenenii po-lozheniya telezhki [Analysis of the Transverse Vibrations of the Bridge Crane with Trolley Position Changes], (2013), Visnyk Natsional’nogo Tekhnichnogo Universytetu “Kharkivs’kyy Politekhnichnyy Instytut”, Kharkiv, Ukraine, National Technical University “Kharkiv Polytechnical Institute“, Vol. 36/2013 (1009) , pp. 36 – 39 (In Russian).
14. Burgin B.Sh. Analiz i sintez dvuhmassovykh elektromekhanicheskikh sistem, [Analysis and Synthesis of Two-mass Electromechanical Systems], (1992), 199 p. (In Russian).
15. Bortsov Yu.A., and Sokolovskiy G.G. Avtomatizirovannyy elektroprivod s uprugimi svyazy-ami, [Automated Elec-tric Drive with Elastic Couplings], (1992), Saint-Petersburg, Russian Federation, Energoatomizdat Publ., 288 p. (In Russian).
16. Gerasimyak R.P., Ant A.M., and Ramaruvahuaka A.M. Sintez elektromekhanicheskoy sistemy podyomnykh mechanizmov s podavleniem uprugikh kolebaniy [Synthesis of Hoisting Mechanisms Electromechanical System with Suppression of Elastic Vibrations], (1996), Elektromashynobuduvannya ta Elektroobladnannya Publ., Kiev, Ukraine, Vol. 48/1996 (In Russian).
17. Schröder D. Elektrische Antriebe – Regelung von Antriebssystemen. 3. Auflage, (2009), Berlin, Germany, Springer Verlag, 1336 p. (In German).
18. Kotsegub P.Kh., Barinberg V.A., and Tolochko O.I. Optimizatsia dvuhmassovykh sistem regulirovaniya skorosti, [Optimization of Two-mass Velocity Control Systems], (1998), Izvestiya Vuzov. Elektromekhanika Publ., Novo-cherkassk, Russian Federation, Vol. 4/1998, pp.54 – 57 (In Russian).
19. Kessler C. Über die Vorausberechnung optimal Abgestimmer Regelkreise, (1955), Regelungstechnik, Vol. 1, pp. 16–22, Vol. 2, pp. 40 –49 (In German).
20. Kotsegub P.Kh., and Tolochko O.I. Optimizatsiya sistem upravleniya po modulyu amplitudno-chastotnoy kharakteristiki, [Control Systems Optimization by Frequency Response Magnitude], (1977), Izvestiya Vuzov. Elektromek-hanika Publ., Novocherkassk, Russian Federation, Vol. 6/1977, pp.679 – 684 (In Russian).
Last download:
5 Jan 2020

[ © KarelWintersky ] [ All articles ] [ All authors ]
[ © Odessa National Polytechnic University, 2014-2018. Any use of information from the site is possible only under the condition that the source link! ]