Scientific and Technical Journal


ISSN Print 2221-3937
ISSN Online 2221-3805
In modern science and technique is known a class of systems – multi-parametric patterns recognition systems. In such systems, recognition objects are represented by several patterns of different nature of origin.This allows to significantly increase the number of informative signs for the recognition object and increase the classification reliability. But in this case arised a negative aspect – increasing the time complexity of the data analyze processing.To eliminate this drawback is known the method of separate analysis of informative features, but it allows to obtain high accuracy of recognition only with a sufficiently large amount of data to be analyzed. This article considered question of the methods development for the joint analysis of information signs in multi-parametric combined pattern recognition systems.Joint analysis involves combining all the images that describe the object of recognition into one global image, the further selection of informative features and the decision on the basis of the minimum metrics. For minimizing the time complexity of data processing and decision making on classification, in article proposed to use methods for selecting informative signs.Using the informative signsselecting gives possibility to exclude form analysisless informative data and get a solution for fewer more informative parameters.The proposed technique using allows, in the case of a limited recognition object description and a small quantity of informative signs, to build an effective strategy for making a decision on classification, which provides increased reliability of recognition and reduced time complexity. The effectiveness of the proposed solution is confirmed from the standpoint of the statistical theory of recognition of Vapnik-Chervonenkis. The results are implemented in the information system for checking textual data for uniqueness.
  1. Simankov, V. S., Lutsenko, E. V., (1999), Adaptive management of complex systems based on the theory of pattern recognition: Monography [Adaptivnoe upravlenie slozhnymi sistemami na osnove teorii raspoznavaniya obrazov: Monografiya], Techn. univ. Kuban state technol. univ., Krasnodar, 318 p.
  2. Zakhozhay, О. І., (2013), Information technology of patterns recognition in tasks of automation information processing and complex systems controlling. Problems of information technologies [Informatsiina tekhnolohiia rozpiznavannia obraziv v zadachakh avtomatyzovanoi obrobky informatsii y upravlinnia skladnymy systemamy. Problemy informatsiinykh tekhnolohii], vol. 01(013), pp. 61‒68.
  3. Ryabenkyi, V. M., Zakhozhay, O. I., (2011), Combined systems of patterns recognition. Problems of information technologies [Kombinovani systemy rozpiznavannya obraziv. Problemy informatsiinykh tekhnolohii], vol. 1(009), pp. 152‒157.
  4. Zakhozhay, O. I., Paerand, Yu. E., (2012), Basic aspects of structure organization of combined systems of patterns recognition. Bulletin of Kherson national technological university [Osnovni aspekty strukturnoi orhanizatsii kombinovanykh system rozpiznavannia obraziv. Visnyk Khersonskoho natsionalnoho tekhnolohichnoho universytetu], vol. 1(44), pp.221‒225.
  5. Zakhozhay, О. І., (2013), The rational aggregate selection of informative patterns in the combined recognition systems. Electrotechnical and computer systems [Selektsiia ratsionalnoi sukupnosti obraziv v kombinovanykh systemakh rozpiznavannia. Elektrotekhnichni ta kompiuterni systemy], vol. 09(85), pp. 186‒192.
  6. Zhuravlev, Yu. I., (1998), Selected scientific works [Izbrannye nauchnye trudy], Publishing house Magistr, Moscow, 420 p.
  7. Menyaylenko, O. S., Zakhozhay, O. I., Patient of Ukraine 90109 IPC (2014.01) G06 9/00 publ. 12.05.2014, bull. №9.
  8. Menyaylenko, O. S., Zakhozhay, O. I., Patient of Ukraine 92493 IPC (2014.01) G06K 9/00 publ. 26.08.2014, bull. №16.
  9. Menyaylenko, O. S., Bidyuk P. I., Zakhozhay, O. I., Patient of Ukraine 100283 IPC (2015.01) G06K 9/00 publ. 27.07.2015, bull. №14.
  10. Zakhozhay, О. І., (2015), Criteria for the determination of informativity and patterns ranking for making decisions in multi-parametric combined recognition systems. Electrotechnical and computer systems [Kriterii vyznachenia informatyvnosti ta ranzhuvania obraziv pry pryjniatti rishen v bagatoparametrychnykh kombinovanykh systemakh rozpiznavannia. Elektrotekhnichni ta kompiuterni systemy], vol. 27(103), pp. 196‒204.
  11. Vapnik, V. N., Chervonenkis A. Ya., (1974), Theory of patterns recognition [Teoriya raspoznavaniya obrazov], Nauka, Moscow, 298 p.
  12. Gmuran, V. E., (2002), Theory of probability and mathematical statistic [Teoriya veroyatnostej i matematicheskaya statistika], High school, Moscow, 478 p.
  13. Fisher, R. A., The Use of Multiple Measurements in Taxonomic Problems. Annals of Eugenics, vol. 7, pp. 179‒188.
  14. Gorelik, A. L., Skripkin, V. A., (1984), Methods of patterns recognition. Publ. 2 [Metody raspoznavaniya obrazov], High school, Moscow, 219 p.
Last download:
24 Oct 2020

[ © KarelWintersky ] [ All articles ] [ All authors ]
[ © Odessa National Polytechnic University, 2014-2018. Any use of information from the site is possible only under the condition that the source link! ]