Scientific and Technical Journal

ELECTROTECHNIC AND COMPUTER SYSTEMS

ISSN Print 2221-3937
ISSN Online 2221-3805
ALGORITHMIC PROCESSES OF THE LARGE NUMBERS FACTORIZATION BASED ON THE THEORY OF ELLIPTIC CURVES
Abstract:

In this article we consider the problem of the composite numbers factorization. Various methods for solving this problem were described and also their comparative characteristics were given. The Lenstra method algorithm was analyzed and described in detail. The ways of its optimization were given.

Authors:
Keywords
References

Koblitz, N. (2001), A Course in Number Theory and Cryptography. — M.: Scientific Publishing House "TVP", - P. 188-200. - ISBN 5-85484-014-6.

2. Manin, Yu., Panchishkin, A., (2009), Introduction to the modern theory of numbers, [Vvedenie v sovremennuyu teoriyu chisel] - Moscow: MSC-MO.

3. Wagon, S. (1986), Primality Testing // Math. Intel, Vol.8, Num. 3, p. 58-61.

4. Vasilenko, O. (2003), Theoretical-numerical algorithms in cryptography, [Teoretiko-chislovyye algoritmy v kriptografii] - Moscow: MCCME, - ISBN 978-5-94057-103-2.

5. Bakhtiari, M., Maarof, M. (2012), Serious Security Weakness in RSA Cryptosystem // IJCSI — Vol.9, Iss. 1, No 3. — P. 175–178. — ISSN 1694-0814.

  1. https://eprint.iacr.org/2010/006.

7. Ishmukhametov, Sh. (2011), Methods for the factorization of natural numbers: Textbook - Kazan: Kazan. UN. - 190 pp.

8. Vinogradov, I. (1952), Fundamentals of number theory [Osnovy teorii chisel] – 5-th ed. - M.-L.: State technical publishing, - 180 p.

9. Cohen, A. (2000), Course in Computational Algebraic Number Theory — 4th Print Edition — Berlin, Heilldberg, New-York: Springer. — 550 p. — (Graduate Texts in Mathematics) — ISBN 978-3-540-55640-4 — ISSN 0072-5285.

  1. Crandall, R. E., Pomerance, C. B. (2001), Prime numbers: A Computational Perspective. — New York: Springer-Verlag, — 545 p. — ISBN 0-387-94777.

11. Brent, R. (1998), Some integer factorization algorithms using elliptic curves // Australian Computer Science Communications 8, 149-163 p.

  1. Lenstra, H. (1987), Factoring integers with elliptic curves. Annals of Mathematics.

13. Lenstra, H. (1986), Elliptic Curves and Number-Theoretic Algorithms // Proceedings of the International Congress of Mathematicians. Thorsten Kleinjung, Kazumaro Aoki, Jens F.

14. Canfield, E., Erdős, P., Pomerance, C. (1983), On a Problem of Oppenheim concerning Factorisatio Numerorum // Journal of number theory. — Vol. 17.

  1. Brent, R. (1999), Factorization of the tenth Fermat number. Mathematics of Computation 68.

16. Makarenko, A., Pykhteev, A., Efimov, S., (2012), Parallel implementation and comparative analysis of factorization algorithms with distributed memory, [Parallel'naya realizatsiya i sravnitel'nyy analiz algoritmov faktorizatsii s raspredelennoy pamyat'yu] —Omsk State University. F. M. Dostoyevsky.

17. http://www.ec2instances.info.

18. Atkin, A., Morain, F. (1993), Finding suitable curves for the elliptic curve method of factorization. Mathematics of computation vol. 60, number 201.

  1. Shor, P. (1997), Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer // Foundations of Computer Science: Conference Publications. — P. 1484.
Published:
Last download:
31 Aug 2018

[ © KarelWintersky ] [ All articles ] [ All authors ]
[ © Odessa National Polytechnic University, 2014-2018. Any use of information from the site is possible only under the condition that the source link! ]
Яндекс.Метрика