Scientific and Technical Journal

ELECTROTECHNIC AND COMPUTER SYSTEMS

ISSN Print 2221-3937
ISSN Online 2221-3805
FORMATION METHOD OF TEXT FRAGMENTS FOR SEARCH SYSTEMS BASED ON THE DISTRIBUTION OF TERMS BY DOCUMENT
Abstract:
Increasing the amount of information needed for people activities in various fields, growing very fast. Finding relevant information for the user is the primary goal of any information system. On the basis scientific papers of general statements text characterized only by the number of keywords in the text. It was impossible to select a fragment of text with a term that is often found. Despite of the fact that a lot of research has been done on this topic, they do not completely solve the problem of formation of text frag-ments. Aim of the paper is the develop the method of formation of text fragments based on the distribution of terms by document. Developed the method of forming text fragments according to the terms of the distribu-tion of the document. Described three approaches installation the ranges and formation of text fragments. Developed the algorithm of fragments formation. Described the principle of selection range for each term. Developed the algorithm of fragments formation for a specific term. Also described the principle of compar-ing several fragments together. Formation method of text fragments for each term can reduce the time for user query. Based on the study can be argued that the finding fragments are an effective way to provide in-formation in comparison with the result as the entire text.
Authors:
Keywords
DOI
http://dx.doi.org/ 10.15276/eltecs.26.102.2017.6
References
1. Bisikalo, O. V., Vysotska, V. A. (2016). Identifying keywords on the basis of content moni-toring method in Ukrainian texts [Vyyavlennya klyuchovykh sliv na osnovi metodu kontent-monitorynhu ukrayinomovnykh tekstiv]. Radioel-ektronika, informatyka, upravlinnya – Radio elec-tronics, computer science, control, no. 1(36), pp. 74–83 (in Ukrainian).
2. Kungurtsev, A. B., Kovalchuk, S. V., Potochniak, I. V., Shirokostup, M. V. (2016). Creat-ing the domain vocabulary on basis automated anal-ysis of Ukrainian texts [Pobudova slovnyka pred-metnoyi oblasti na osnovi avtomatyzovanogo anali-zu tekstiv ukrayinskoyu movoyu]. Texnichni nauky ta texnologiyi – Technical sciences and technology, no. 3(5), pp. 164–174 (in Ukrainian).
3. Bol'shakova, Ye. I., Klyshinskiy, E. S., Lande, D. V., Noskov, A. A., Peskova, O. V., Ya-gunova, Ye. V. (2011). Automatic processing of natural language texts and computational linguistics [Avtomaticheskaya obrabotka tekstov na yestestven-nom yazyke i komp'yuternaya lingvistika]. M.: MI – EM, – 272 p. (In Russian).
4. The language of search queries as a natural language [IAzyk poiskovykh zaprosov kak estestvennyi iazyk]. Retrieved from: https://events.yandex.ru/lib/talks/809/.
5. Kungurtsev, А. B., Potochniak, I. B. (2014). User interface for communication users with infor-mation systems in a natural language [Interfeys dlya spilkuvannya korystuvachiv z informatsiynymy sys-temamy na pryrodniy movi]. Informatsiyni systemy ta tekhnolohiyi. Elektrotekhnichni ta komp"yuterni systemy – Information systems and technologies. Electrical engineering and computer systems, no. 13(89), pp. 90–99 (in Ukrainain).
6. Keywords in the text - how to use it correct-ly? [Kliuchevye slova v tekste kak pravilno upotrebliat?]. Retrieved from: http://dimokfm.ru/klyuchevyie-slova/.
7. How to collect keywords [Kak sobirat kliuchevye slova]. Retrieved from: http://goodseo.su/kak-sobirat-kluchevye-slova.
8. Information technology management. Meth-ods of searching for textual information [Infor-matsionnye tekhnologii upravleniia Metody poiska tekstovoi informatsii]. Retrieved from: https://refdb.ru/look/2575304-p10.html.
9. Distribution of keywords by site pages [Raspredelenie kliuchevykh slov po stranitsam saita]. Retrieved from: http://www.kadrof.ru/mk/4815.
10. Vavilenkova, A. I. (2012). Logical-linguistic model clauses as a means of comparing the content of text documents [Lohiko-linhvistychni modeli rechen yak zasib porivniannia tekstovykh dokumentiv za zmistom]. Matematychni mashyny i systemy - Mathematical Machines and Systems, no. 1, pp. 166–173 (in Ukrainain).
11. Vavilenkova, A. I. (2011). The structure of linguistic processes of comparative analysis of texts in content [Struktura linhvistychnoho protsesu sys-temy porivnialnoho analizu tekstiv za zmistom]. Sys-temy pidtrymky pryiniattia rishen. Teoriia i praktyka - Decision Support Systems. Theory and practice, pp. 153–156 (in Ukrainain).
12. Flesch–Kincaid readability tests [Indeks udobochitaemosti]. Retrieved from: https://ru.wikipedia.org/wiki.
13. LanguageTool. Retrieved from: https://languagetool.org/uk/. 14. Kungurtsev, A. B., Gavrilova, A. I., Leongard, A. S., Potochniak, I. V. (2016). Account-
ing of inter-phrase communication for automated construction the explanatory dictionary of domain knowledge [Uchet mezhfrazovykh sviazei pri avtomatizirovannom postroenii tolkovogo slovaria predmetnoi oblasti]. Informatika i matematicheskie metody v modelirovanii – Informatics and mathe-
matical methods in simulation, no. 2, pp. 173–183 (in Ukrainian).
15. Vavilenkova, A. I. (2016). Methods for identifying logical connections between parts of text documents [Sposoby vyiavlennia lohichnykh zviazkiv mizh chastynamy tekstovykh dokumentiv]. Visnyk Natsionalnoho tekhnichnoho universytetu «Kharkivskyi politekhnichnyi universytet» - The Bul-letins of NTU
Published:
Last download:
2018-07-15 00:50:36

[ © KarelWintersky ] [ All articles ] [ All authors ]
[ © Odessa National Polytechnic University, 2014. Any use of information from the site is possible only under the condition that the source link! ]
Яндекс.Метрика