### Subject

#### System Engineering

MANAGE DIGITAL MODEL BASED ON MATRIX-TOPOLOGICAL DESCRIPTION ELECTROMAGNETIC CIRCUITS
Abstract:
In the article the digital model of the electromagnetic circuit with the highest level of detail both electric and magnetic circuit. The magnetic circuit is represented in the same detail as electric, and is described by the contour matrix. The mathematical description of electromagnetic induction device parame-ters are determined by the geometrical dimensions and characteristics of the magnetic cores. The topology of circuit blocks represented by the matrix that takes into account both current and charge distribution in the circuit elements. An analysis is made of the causes of the error in the calculation of energy. This error con-sists of two components: numerical simulation errors and errors in the numerical metrology apparatus. Met-rological procedures is made for the investigation of the energy of electromagnetic circuits. A stable mathe-matical model of electromagnetic circuits in a matrix form is developed, convenient for implementation on digital computers. The model is composed relative to the increments of magnetic fluxes and potentials on the capacitors. Thus it is convenient to follow the energy processes in the reactive power-consuming elements of the circuit. An adaptive algorithm for controlling a computational process using the energy balance criterion for studying electromagnetic circuits with nonlinear characteristics is developed. Feedback is provided through a special parameter. The peculiarity of this model is that it in its kind combines several methods of integrating a system of differential equations. By combining them, it is possible to achieve maximum correct-ness of calculations for the energy components in the simulation of the electromagnetic circuit.
Authors:
Keywords
DOI
http://dx.doi.org/ 10.15276/eltecs.26.102.2017.4
References
1. Curtiss, C. F., Hirschfelder, J. O. (1952) “Integration of stiff equations”. – Proc. Nat. Acad. Sci. USA, p.38.
2. Beyko, I. V., Bublik, V. N., Zinko, P. N. (1983) “Methods and algorithms for solving optimization problems” [Metody i algoritmy reshenija zadach optimizacii], Vishcha school. The head publishing house, Ukraine, Kiev, p. 512.
3. Brajton, R. K., Gustavson, F. G., Hjechtel, G. D. (1972) “A new effective algorithm for solving algebraic systems of differential equations, based on
the use of numerical differentiation formulas in implicit form with differences back” [Novyj jeffektivnyj algoritm reshenija algebraicheskih sistem differencial'nyh uravnenij, osnovannyj na ispol'zovanii formul chislennogo differencirovanija v nejavnom vide s raznostjami nazad], Automation in the design, Mir, USSR, Moskow, pp. 136-148.
4. Vasiliev, F. P. (1981) “Methods of solving extremal problems: Textbook” [Metody reshenija jekstremal'nyh zadach: Uchebnoe posobie], Science. The main edition of physics and mathematics, USSR, Moscow, p. 400.
5. Voevodin, V. V., (1977) “Computational foundations of linear algebra” [Vychislitel'nye osnovy linejnoj algebry], Science, USSR, Moskow, p. 303.
6. Gill, F., Murray, W., Wright, M. (1985) “Practical optimization: Trans. with the English” [Prakticheskaja optimizacija: Per. s angl.], Mir, USSR, Moskow, p. 509.
7. Ilyin, V. N. (1979) “Fundamentals of automation of circuit design” [Osnovy avtomatizacii shemotehnicheskogo proektirovanija], Energy,
USSR, Moskow, p. 392. 8. Krasnov, V. V., Siddelev, N. I. (2013), “Matrix-topological description of electromagnetic circuits” [Matrychno-topologichnyj opys elektromagnitnyh kil], Electrical and Computer Systems, Technica, Kiev, Ukraine, Vol. 11 (87), pp. 66-73.
9. Krasnov, V. V. and Siddelev, N.I. (1984), “Topologically-isomorphic modeling of electromagnetic circuits” [Topologicheski-izomorfnoe modelirovanie jelektromagnitnyh cepej], Electrical equipment of ships. Nikolaevskij korablestroitel'nyj institute Publ., Nikolaev, Ukraine, pp. 3-9.
10. Krasnoselsky, M. A., Pokrovsky, A. V. (1983) “Systems with hysteresis” [Sistemy s gisterezisom], Science. The main edition of physics and mathematics, USSR, Moscow, p. 272.
11. Marchuk, G. I. (1980) “Methods of Computational Mathematics” [Metody vychislitel'noj matematiki], Science. The main edition of physics and mathematics, USSR, Moscow, p. 536.
12. Pisarenko, G. S. (1985) Generalized nonlin-ear model of energy dissipation in vibrations [Obob-shhennaja nelinejnaja model' ucheta rassejanija jenergii pri kolebanijah], Naukova Dumka, Ukraine, Kiev, p. 240.
13. Pisarenko, G. S., Boginich, O. E. (1974) “Comparison of the results of calculating the oscilla-tions of systems with one degree of freedom, taking into account the energy dissipation in the material, starting from various equations describing the con-tour of the hysteresis loop” [Sopostavlenie rezul'ta-tov rascheta kolebanij sistem s odnoj stepen'ju svo-body s uchetom rassejanija jenergii v materiale, ishodja iz razlichnyh uravnenij, opisyvajushhih kontur petli gisterezisa], Naukova Dumka, Ukraine, Kiev, pp. 12-24.
14. Polak, E. (1974) “Numerical optimization methods. A unified approach: Trans. with the Eng-lish” [Chislennye metody optimizacii. Edinyj pod-hod: Per. s angl.], Mir, USSR, Moskow, p. 376.
15. Rakitskij, J. V., Ustinov, S. M., Cher-noruckij, I. G. (1979), “Numerical methods for solv-ing rigid systems” [Chislennye metody reshenija zhestkih sistem], Science, USSR, Moskow, p. 208.
16. Ryapolov, S. I. (1975) “A generalized meth-od for the numerical solution of Cauchy problems”
[Obobshhennyj metod chislennogo reshenija zadach Koshi],Ministry of Defense of the USSR, p. 125.
17. Savinovsky, Yu., A., Stratonov, A. V. (1984) “Some contradictions in the theory of power” [Nekotorye protivorechija teorii moshhnosti],Izv. Universities: Energy, № 10, pp. 58-60.
18. Siddelev, N. I. (2015), “Matrix-topological description of electromagnetic circuits in the form Cauchy” [Matrichno-topologicheskoe opisanie jel-ektromagnitnyh cepej v forme Koshi], Electrical and Computer Systems, Science and Technical, Ukraine, Vol. 20 (96), pp. 63-73.
19. Djakonov, V. P. (1985) “Handbook of cal-culations on micro calculators” [Spravochnik po raschetam na mikrokal'kuljatorah], Science, USSR, Moskow, p. 224.
20. Forsajt, Dzh., Malkolm, M., Mouler, K. (1980) “Computer methods of mathematical calcula-tions: Trans. from English” [Mashinnye metody ma-tematicheskih vychislenij: Per. s angl. ], Mir, USSR, Moskow, p. 280.
21. Chua, L.O., Pen-Min, Lin (1980) “Machine Analysis of Electronic Circuits: Algorithms and Computational Methods” [Mashinnyj analiz jel-ektronnyh shem: Algoritmy i vychislitel'nye meto-dy], Energy, USSR, Moskow, p. 640.
Published: