Scientific and Technical Journal


ISSN Print 2221-3937
ISSN Online 2221-3805
Presentation of the principles and results of numerical-field calculation of the coordinate and temporal functions of power actions of an electromagnetic nature in the active zone of a three-phase induction motor (TIM) under load conditions.Methodology.Calculations of magnetic fields are carried out with the finite elements method by the FEMM program. The calculations are automated by controlling the operation of the program by means of the scripts created in Lua language. Coordinate functions are obtained by a one-time calculation in a statics, temporal functions – in dynamics by multi-position calculations of rotating magnetic fields within the full rotation of the rotor.Results.Test calculations are carried out on a 15 kW TIM. The distribution of forces along the stator and rotor grooves, along the stator teeth, as well as the dynamics of the changes of these forces and also the forces of radial contraction of the stator core and of the electromagnetic moment of the stator and rotor interaction are analyzed.Originality.The updated principles of forming the design model of TIM are presented on the basis of design data with the original formation of the current structure in the rotor grooves, as well as the author's principles for organizing multi-position calculations of the rotating magnetic fields of TIM in dynamics. Unique temporal functions of forces acting on individual elements of the electromagnetic system of TIM are obtained.Practical value. Numerical-field analysis of the coordinate functions of the forces acting in the TIM allowed to reveal aspects that were previously unavailable when using classical methods for calculating the TIM magnetic circuit. The results showed that when they are taken into account, the TIM design process has reserves of refinement in terms of ensuring its mechanical reliability and durability.
  1. Voldek, A. I., Popov, V. V.,(2010), “Electrical Machines. Machines of alternating current” [Elektricheskie mashinyi. Mashinyi peremennogo toka], SPb, Russian Federation, Piter Publ, 356 p.
  2. Kopyilov, I. P., Goryainov, F. A., Klokov, B. K.,(2011), “Design of electrical machines” [Proektirovanie elektricheskih mashin], Moscow, Russian Federation, Yurait Publ, 767 p.
  3. Bianchi, Nicola, (2005), Electrical Machine Analysis Using Finite Elements (Copyrighted Material). CRC Press, Taylor & Francis Group, University of West Florida, 276 p.
  4. “Finite Element Method Magnetics : OldVersions. FEMM 4.2 11Oct2010 Self-Installing Executable”, avaliable at: wiki/OldVersions.
  5. Milykh, V. I., Polyakova, N. V.,(2006), “Determination of electromagnetic parameters of electric machines based on numerical calculations of magnetic field” [Opredelenie elektromagnitnyih parametrov elektricheskih mashin na osnove chislennyih raschetov magnitnyih poley], Electrotekhnika i Electromekhanika, Kharkiv, Ukraine, No. 2, pp. 40−46.
  6. Milykh, V. I., Polyakova, N. V., (2013), “The force interactions in turbogenerator in different steadystate working conditions” [Silovyie vzaimodeystviya v turbogeneratore v razlichnyih statsionarnyih rezhimah rabotyi], Tehnichna Elektrodinamika, Kiev, Ukraine, No. 5, pp. 47–54.
  7. Milykh, V. I., Polyakova, N. V., (2014), “Dynamics of force action in turbogenerators with different tooth-slot structures in nominal mode” [Dinamika silovyih deystviy v turbogeneratorah s raznyimi zubtsovo-pazovyimi strukturami v nominalnom rezhime rabotyi], Tehnichna Elektrodinamika, Kiev, Ukraine, No. 3, pp. 56–63.
  8. Petrushin, V. S., Yenoktaiev, R. N., (2016), “Using a multi-criteria optimization in the design of controlled asynchronous motors” [Ispolzovanie mnogokriterialnoy optimizatsii pri proektirovanii reguliruemyih asinhronnyih dvigateley], Bulletin of NTU KhPI. Series: Electrical Machines and Electromechanical Eenergy Conversion, Kharkiv, NTU KhPI, Ukraine, No. 11 (1183), pp. 11–14.).
  9. Vaskovskiy, Yu. N., Geraskin, А. А., Belenok, N. V., (2016), “Induction motors angular rotor eccentricity diagnosis by analyzing vibroperturbing forces” [Diagnostika kutovogo ekstsentrisitetu rotora asinhronnih dviguniv na osnovi analizu vibrozbudzhuyuchih sil], Bulletin of NTU KhPI. Series: Electrical Machines and Electromechanical Eenergy Conversion, Kharkiv, NTU KhPI, Ukraine, No. 11 (1183), pp. 30–35.
  10. Milykh, V. I., Shilkova. L. V., (2016), “Numerically-field confirmatory analysis of a three-phase induction motor design parameter” [Chislenno-polevoy poverochnyiy analiz proektnyih parametrov trehfaznyih asinhronnyih dvigateley], Elektromehanichni i Energozberigayuchi Sistemi, Kremenchug, Ukraine, No. 1/2016 (33), pp. 58−65.
  11. Milykh, V. I., Shilkova, L. V., (2016), “Numerical-field analysis of the magnetic field of a three-phase induction motor in statics and dynamics” [Chisleno-polevoy analiz magnitnogo polya trehfaznogo asinhronnogo dvigatelya v statike i dinamike], Bulletin of NTU KhPI. Series: Electrical Machines and Electromechanical Eenergy Conversion, Kharkiv, NTU KhPI, Ukraine, No. 11 (1183), pp. 80–87.
  12. Milykh, V. I., Polyakova, N. V., (2015), “Automated formation of calculation models of turbogenerator for software environment FEMM” [Avtomatizirovannoe formirovanie raschetnyih modeley turbogeneratorov dlya programmnoy sredyi FEMM], Electrotekhnika i Electromekhanika, Kharkiv, Ukraine, No. 4, pp. 7−14. (In Russian), doi: 10.20998/2074-272X.2015.4.02.
  13. Milykh, V. I., Polyakova, N. V., (2015), “Automated calculations of the dynamics of a turbo-generator electromagnetic processes in the software environment FEMM” [Avtomatizirovannyie raschetyi v programmnoy srede FEMM dinamiki elektromagnitnyih protsessov turbogeneratorov], Electrotekhnika i Electromekhanika, Kharkiv, Ukraine, No. 6, pp. 16–20.
  14. Ivanov-Smolenskiy, А. V., (1989), “Electromagnetic forces and energy conversion in electrical machines” [Elektromagnitnyie silyi i preobrazovanie energii v elektricheskih mashinah], Moscow, Russian Federation, Vysshaia shkola, 312 p.
Last download:
2017-07-16 21:21:54

[ © KarelWintersky ] [ All articles ] [ All authors ]
[ © Odessa National Polytechnic University, 2014. Any use of information from the site is possible only under the condition that the source link! ]