Scientific and Technical Journal

ELECTROTECHNIC AND COMPUTER SYSTEMS

ISSN Print 2221-3937
ISSN Online 2221-3805
APPLICATION OF PRINCIPAL COMPONENT INDICES FOR IDENTIFICATION OF INFLUENCE ON LEVEL POWER CONSUMPTION
Abstract:

The article describes the application of the main component method for estimating the contribution of the hourly electrical load to the configuration of the daily schedule of electrical loads of power market objects.The results of the article can be used to determine the tariff zones of electric load graphs that affect the overall result of the analysis of energy market objects.To do this, it is suggested to avoid evaluating experts, to take into account as much as possible the number of indicators influencing the decision-making and apply the data obtained from the systems of automated metering of power consumption. As a mathematical tool for the analysis of the GEN, the method of principal components can be used as a composite factor analysis.The main component method reveals k component factors that explain the entire variance and correlation of the output k random variables; While the components are constructed in decreasing order of the fraction, which explains them, the total variance of the output quantities, allows us to often confine ourselves to a few first components.To study trends in the energy consumption regime of energy market objects, it is necessary to identify the dominant electrical loads from the GEN and also to determine the cause-effect relationships between them.Some of these loads can be common and it is advisable to combine them into one main component.This will reduce the amount of statistical data that will include the bulk of electrical loads and determine the structure of the GEN - peak time, half-peak and electrical load failure. The least influential components of the GEN that do not enter the main part do not contribute to the correlation relationship between the symptoms.

Authors:
Keywords
DOI
References
  1. Ivakhnenko, V. M., (2002), The course of economic analysis. [Kurs ekonomichnoho analizu. Navchalʹnyy posibnyk]3rd edition revised and enlarged. – Kyiv: Knowledge Press,  -–190S.
  2. Tolkachev, D. O., Application of principal component for assessing the competitiveness of enterprises [Zastosuvannya metodu holovnykh komponent dlya otsinky konkurento-spromozhnosti pidpryyemstva]/ Donetsk National University. – Donetsk.
  3. Zagreb, N. M. (2014), Theoretical aspects of factor analysis in analyzing the dynamics of the financial condition of the company[Teoretychni aspekty vykorystannya faktornoho analizu pry analizi dynamiky finansovoho stanu pidpryyemstva] / Proceedings Kirovograd National Technical University. Economic science. - Kirovograd :, – 455–461s.
  4. Halafyan, A. A. (2007) STATISTICA 6. Statystycheskyy data analysis: Textbook [Statystycheskyy analyz dannykh: Uchebnyk] / [3rd ed.]. – M .: signature "Binom-Press",–    512 p.
  5. Andryenko, V. N. (2008), Statistical methods of analysis of economic indicators [Statystycheskye metody analyza ékonomycheskykh pokazateley] / – Access: http://www.rusnauka.com/11_EISN_2008/Economics/ 30352.doc.htm.
  6. Who, Dzh.-O. (1989), Faktor, dyskrymynant klaster analysis and [Faktornyy, dyskrymynantnyy y klasternyy analyz] / Lane with English. – M .: Finance and Statistics, – 608s
  7. Yankovoy, A. G. (2001), Mnohomer analysis in the system STATISTICA [Mnohomernyy analyz v systeme STATISTICA] / Odessa: Optimum,– 216 p.
  8. Soshnikova, L. A. (1999), Mnohomer statystycheskyy analysis in economy [Mnohomernyy statystycheskyy analyz v ékonomyke] / ed. prof.. – Moscow: UNITY-DANA,  – 598 p.
  9. Dubrov, A. M. (1998) Multidimensional statistical methods[Mnohomernye statystycheskye metody]– M .: Finance and Statistics,
  10. (2003) Key Komponenty faktor analysis // StatSoft, Inc [Hlavnye komponenty y faktornyy analyz] – Access to the property: http://statsoft.ru/home/textbook/ default.htm.
  11. (2012) The method Hlav component (PCA) [Metod Hlavnykh Komponent (PCA)] // chemometrics.ru. – Access to the property:http://www.chemometrics.ru/materials /textbooks / pca.htm.
  12. K. Yberla (1980), Faktor analysis [factor analysis] / M. Statistics, – 398 p.
  13. Dobrovolska, L.N. (2014), Monitoring and planning of energy efficient modes elektrospozhyvannyavuhilnyh mines: monograph [Monitoring and planning of energy efficient mode power consumption of coal mines: monograph] / Lutsk Lutsk NTU, 152pages
Published:
Last download:
2017-11-19 06:36:28

[ © KarelWintersky ] [ All articles ] [ All authors ]
[ © Odessa National Polytechnic University, 2014. Any use of information from the site is possible only under the condition that the source link! ]
Яндекс.Метрика