Scientific and Technical Journal


ISSN Print 2221-3937
ISSN Online 2221-3805

It is shown that the class of adequate mathematical models of dynamic objects of varying complexity is integrated model, built on the principle "input - output". It is important that this class of models, presented as a macro model of the object based on its input and output, suitable for linear and nonlinear modeling tasks productions. The most convenient form of descriptions of integrated macro models should be considered Volterra equations, numerical solution which is most often performed by a quadrature. It is noted that the main disadvantage of the use of quadrature formulas in the procedures of the approximate (numerical) integration is a significant error on large intervals of integration. Obvious known ways of minimizing errors of quadrature formulas on the selected class of functions should be considered a rational choice of the coefficients for quadrature formulas, as well as components and integration steps. Moreover, the accumulation of errors to increase the number of steps is determined not so much by the size of the step, as by replacing the original integral by a finite sum. The latter circumstance is important for modeling of objects in the real-time integration interval may be large or even unknown. To improve the accuracy of quadrature formulas procedure consisting in the expansion of the numerical integration of the original integral into two and apply for each of the last of its quadrature rules (for example, a combination of open and closed types of formulas of Newton-Cotes) can be offered. The increase in computing speed in the implementation of the integrated macro models based on Volterra models is achieved by using the method of degenerate cores, a feature of which is the same amount calculation step. Proposed fast algorithms for computing the design implementation of integrated macro models, providing calculations in real-time.

  1. Eikhoff, P.(1975) Basics of identification management systems [Osnovy identificacii system upravlenia] Moscow, Russian Federation,Mir Publ.,  683 p. (In Russian).
  2. Aparzin, A. S., Soloducha, S. V. (1999), Mathematical modeling of nonlinear dynamical systems by Volterra series [O  matematicheskom modelirovanii nelineinych dinamicheskich system rjadami Volterry]. Electronnoe modelirovanie, Kyiv, Ukraine, Izd. dom Electronnoe modelirovanie Publ., № 2, pp. 3 ― 12.
  3. Asaubaev, K. Sh., Barkin, A. I., Popkov, Yu. S. (1976), Analysis of nonlinear systems described by a number of Volterra [Analis nelineinyh system, opisyvaimyh rjadom Volterra]. Avtomatika i telemehanika Moscow, Russian Federation,Izd. dom Avtomatika i telemehanika Publ., № 11 pp. 5 ― 15.
  4. Breslavets, V. S., Kravets, V. O., Serkov, O. A. (1999), Experimental determination nuclear device model Voltaire protection of information channels [Eksperimentalne vysnachennia jader Volterra modeli prystroyu zahystu kanalu zv’jazku] Systemy obrobky informatsii, Kharkiv, Ukraine Nationalna academia nauk UkrainyPubl., № 2/5 (In Ukrainian).
  5. Brikman,M. S. (1979)Integralmodelofmodernmanagementtheory [Integralniemodelidvsovremennoiteoriiupravlenia] Riga, Latvia, ZinatiePudl., , 224 p.
  6. Verlan, A. F., Sagatov, M. V., Sytnik, A. A. (2011), Methods of mathematical and computer modeling of transducers and systems based on integral [equations Metody matematicheskogo i cop’uternogo modelirovania izmeritelnych preobrazovatelei i system na osnove integralnych uravnenii] Tashkent, Uzbekistan, “Fan” Publ. 336 p. (In Russian).
  7. Verlan, A. F., Fedorchuk, V. A., Ivanuk, V. A.(2010), Computer modeling in problems of dynamics of electromechanical systems [Komputerne modeluvannia v zadachah dinamiki elektromehanichnyh system] Kam’janetc-Podilsry universitet, Ukraine, “Institut problem modelirovania v energetike” Publ., 204 p. (In Ukrainian).
  8. Pavlenko, V. D., Cherevatyi, V. V., Burdeinyi, V. V.(2006) Construction of nonlinear systems models in the form of Volterra kernels using cluster computing technology [Postroenie modelei nelineinyh system v vide jader Voltera s ispolzovaniem tehnologii klasternyh vychislenii] Zbirka naukovyh prac, Evpaporia, Ukraine, ISDMIT, vol. 1, PP 159 ― 162.
  9. Apartsyn, A. S. (1991) Mathematical modelling of the dynamic systems and objects with the help of the Volterra integral series EPRI–SEI Joint seminar. – Beijing, China. pp. 117–132.
  10. Boyd, S., Tang, Y. S., Chua, L. O.(1983)    Measuring Volterra kernels  IEEE Trans. on Circuits and Systems.  Vol. CAS–30, No. 8. pp. 571–577.
  11. Chua, L.O, Liao, Y (2003) Measuring Volterra Kernels (II) Int. J. Circuit Theory and Applications. Vol. 17, № 2, pp. 151–190.
  12. Samarskii, A. A., Gulin, A. V. (2003) Numerical Methods of Mathematical Physics [Chislennye metody matematicheskoi fiziki] Moscow, Russian Federation,Nauchnyi Mir Publ., 2 316 p. (In Russian).
  13. Nikolskii, S. M.(1988) Quadrature equation [Kvadraturnye uravnenia] Moscow, Russian Federation,Nauka Publ., 255 p. (In Russian).
  14. Bahvalov, N. S., Zhitkov, N. P., Kobelkov, V. M. (2006) Numerical Methods [Chislennye metody] Moscow, Russian Federation,BINOM Publ.,  636 p. (In Russian).
  15. Zaluk, Z. B., Chistokletova, S. S.(2002) Asymptotic solutions of equations Volterra-Hammerstein [Asimptoticheskie reshenia uravnenia Volterra-Gammersteina] Izvestia VUZov. Mathematika, Moscow, Russian Federation,Izd. dom Izvestia VUZov Publ., № 6 pp. 78 ― 81.
  16. Hachatrian, H. A., Grygorian, S. A.(2012) On the nontrivial solvability of Hammerstein-Voltera integral equations [O netrivialnoi razreshimosti integral’nyh uravnenii Gammersteina- Volterra] Vladikavkazkii mathematicheskii jornal Vladikavkaz, Russian Federation,Izd. dom Vladikavkazkii mathematicheskii jornal Publ.,  vol. 14, № 2 pp. 57 ― 66.
  17. Poljanin, A. D., Manzharov, A. V. (2003) Handbook of Integral Equations [Spravochnik po integralnym uravneniam] Moscow, Russian Federation,Fizmatlit Publ., 608 p. (In Russian).
Last download:
2017-11-23 19:24:19

[ © KarelWintersky ] [ All articles ] [ All authors ]
[ © Odessa National Polytechnic University, 2014. Any use of information from the site is possible only under the condition that the source link! ]