Scientific and Technical Journal

ELECTROTECHNIC AND COMPUTER SYSTEMS

ISSN Print 2221-3937
ISSN Online 2221-3805
APPROACH TO THE EVALUATION OF UNCERTAINTY IN FORECASTING PROBLEMS
Abstract:

The papershows the classificationof uncertaintiesin solving problemsof forecasting.Uncertaintiesin solvingpredictionmanifested in the formof probability distributionsin the form ofsubjective probabilitiesinthe form ofinterval uncertainty. Statistical uncertainties arise in the case of measurement error, stochastic external disturbances. To account for this uncertainty type digital filters are used, in particular a Kalman filter. In the absence of statistical observations uncertainty is determined by the forward-looking estimates, averages and EM algorithm. Structural uncertainty is always evaluated using the data. The uncertainty determined about and chooses the best of statistical quality criteria. In case of uncertainty of the amplitude type used fuzzy sets. The algorithm of information processing in the uncertainties of probabilistic nature.

Authors:
Keywords
DOI
References
  1. BidyukP.I., and Terentyev A.N. Postroenie i metody obuchenia bayesovich setey [Construction and Training MethodsBayesian Networks], (2004),TaurideJournalof Computer Science andMathematics, Publ.,Simpferopol, Ukraine,No. 2, pp. 139 – 153. (In Russian).
  2. BidyukP.I, and Fedorov A.V. Prognozirovaniefi-nansovichprocesjvnabirgizvikoristanyamtechni-cheskogoanalizu[Predicting Financial Processes on the Stock Exchange Using Technical Analysis Indicators], (2009),Researchnews National Technical University “КPІ”, Publ., Kiev, Ukraine, No. 2, pp. 59 – 64(In Ukrainian).
  3. BidyukP.I, and Fedorov A.V. Pobudova systemi adaptivnogo prognozirovania finansovo-ekonomi-shnich pokaznikiv ta ii zastosuvannya [Building a System of Adaptive Forecasting Financial, Economic and Its Application], (2009), Mogila State University, Publ., Nikolaev, Ukraine, No. 117, pp. 119 – 129 (In Ukrainian), available at:Url: http://lib.chdu.edu.ua/pdf/naukpraci/computer/2009/117-104-12p.
  4. Schvedov A.S. О metodach Monte-Karlo s cepyami Markova [AboutMonteCarloMarkovChains],(2010),Economic Journal Higher School of Economics, Publ., Moscow, Russian Federation, Vol. 14, No. 2, pp.227 – 243 (In Russian),available at: Url: http://library.hse.ru/e-resources/HSE_economic journal /content.htm ?vo-lume=14&issue=2.
  5. Cooper G.F., (1990), The Computational Complexity of Probabilistic Inference using Bayesian Belief Networks, Artificial Intelligence, Vol. 42, No. 2-3, pp. 393 – 405
  6. Kasitskij А., Bidyuk Р., and Gozhyi А., (2014), Effective Expectation Maximization Algorithm Implementation using Multicore Computer Systems,IAPGOS, 4(4), pp. 35 – 37(In English), available at:Url:http://e-iapgos.pl/abstracted.php?level =4&id _issue=876277.
  7. Neal P., and Rao T.S.,(2007), MCMC for Integer-valued ARMA Processes, Journal of TimeSeries Analysis, 28,pp. 92–110.
  8. StridI., and Walentin K., (2009), Block Kalman Filtering for Large-Scale DSGE Models,Computational Economics, Springer,Vol. 33 (3), pp. 277 – 304.
  9. Zgurowskii M.Z., Bidyuk P., and Terentyev A.M., (2008), Methods of Constructing Bayesian Networks Based on Scoring Functions, Cybernetics and System Analysis, Vol. 44, No. 2, pp. 219 – 224 (In English).
  10. Winters-Hilt S.,(2006), Hidden Markov Model Variants and their Application,BMC Bioinformatics, No. 7 (2),pp. 1–14.
Published:
Last download:
2017-11-18 14:24:39

[ © KarelWintersky ] [ All articles ] [ All authors ]
[ © Odessa National Polytechnic University, 2014. Any use of information from the site is possible only under the condition that the source link! ]
Яндекс.Метрика