Scientific and Technical Journal

ELECTROTECHNIC AND COMPUTER SYSTEMS

ISSN Print 2221-3937
ISSN Online 2221-3805
INFORMATION MODEL OF CLUSTERING STATES OF COMPUTER EQUIPMENT
Abstract:

The paper proposes an information model of clustering conditions of computer equipment, which describes essential to the process parameters and variables, the relationship between them and their behavior. Input to this process is the set of states of the computer equipment, the output – a plurality of clusters of states of computer equipment. In addition to input and output information, the proposed information model includes the functions of the distances (metric) between such states, the valuation function parameters when the cluster analysis and the methods by which will be partition. In carrying out the cluster analysis in the proposed information model reasonability using weighted Euclidean distance, which takes into account the weighting of characteristics and parameters of conditions such as the metric and standard values ​​of the parameters and characteristics that will improve the quality of their clustering.

Authors:
Keywords
DOI
References
  1. Partyka T.L., and Popov Y.Y. Vychyslytelnaya tekhnyka (2-e yzd., pererab. y dop.) [Computing Machinery], (2007), Moscow, Russian Federation, FORUM:

YNFA-M, 608 p., (In Russian), ISBN 5-91134-050-X.

  1. Dontsov D. Sboy y oshybky PK [PC crashes and errors] [Electronic Recurs], (In Russian), Available at: http://www.e reading.link/bookreader.php/103268/Doncov_-_Sboi_i_oshibki_PK._Lechim_komp'yuter _sami.html(Accessed 15.06.2015).
  2. Trofymov V.V. Ynformatsyonnye tekhnolohyy [Information Technologies], (2011), Moscow, Russian Federation, Yurayt, 624 p., (In Russian), ISBN 978-5-9916-0887-9.
  3. Ynformatsyonnye tekhnolohyy [Information Technologies] [Electronic Recurs], (In Russian),

Available at: http://technologies.su/(Accessed 15.06.2015).

  1. Yukhymchuk S.V., and Katsman M.D. Modeli avtomatyzatsiyi vyroblennya rekomendatsiy kerivnyku hasinnya pozhezhi na zaliznychnomu transporti [Models Automation make Recommendations to the head Extinguish the Fire in Railway Transport]: monohrafiya, (2008), Vinnitsa, Ukraine, UNIVERSUM-Vinnitsa, 144 p., (In Ukrainian), ISBN 978-966-641-235-8.
  2. Vaclav Repa, (2012), Information Modeling of Organizations, Tomas Bruckner, 110 p., (In English), ISBN 978-80-904661-3-5.
  3. Ayvazyan S.A., Bukhshtaber V.M., and Enyukov Y.S. Prykladnaya statystyka: Klassyfykatsyya y snyzhenye razmernosty [Applied Statistics: Classification and Dimension Reduction], (1989), Moscow, Russian Federation, Fynansy y Statystyka, 607 p., (In Russian), ISBN 5-279-00054-X
  4. Vorotnikov V.V. Klasteryzatsiya potokiv danykh v telekomunikatsiynykh merezhakh ASU pidrozdiliv za faktornymy oznakamy [Clustering of Data Streams in Telecommunication Networks ACS units by Factor Variable] (2012) [Electronic Recurs], (In Ukrainian), System Ozbroyennya i Viyskova Tekhnika, No. 3, pp. 133 – 138, Available at: http://nbuv.gov.ua/j-pdf/soivt_2012_3_35.pdf(Accessed15.06.2015).
  5. Savchuk T.O., and Petrishyn S.I. Model protsesu chitkoyi klasteryzatsiyi problemnykh sytuatsiy v obchyslyuvalniy ta orhanizatsiyniy tekhnitsi [Model of Clear Clustering Process Problematic Situations in Computer and Organizational Technique], (2014), “INTERNET-OSVITA-NAUKA-2014”, Devyata Mizhnarodna Konferentsiya ION-2014, 14 – 17 zhovtnya, 2014: Zbirnyk Prats, Vinnitsa, Ukraine, pp. 79 – 81 (In Ukrainian).
  6. Savchuk T.O., and Petrishyn S.I. Vyznachennya Evklidovoyi vidstani mizh nadzvychaynymy sytuatsiyamy na zaliznychnomu transporti pid chas klasternoho analizu [Definition of Euclidean Distance Between the emergency-tion of Railway Transport in Cluster Analysis], (2010), Naukovi Pratsi Vinnytskoho Natsionalnoho Tekhnichnoho Universytetu, Seriya “Informatsiyni Tekhnolohiyi ta Kompyuterna Tekhnika”, Vinnitsa, Ukraine, No. 3, (2010), (In Ukrainian), Available at: http://www.nbuv.gov.ua/e-journals/vntu/2010_3/2010.
  7. Barsehyan A.A., Kupryyanov M.S., Stepanenko V.V, and Kholod Y.Y. Tekhnolohyya analyza dannykh: Data Mining, Visual Mining, Text Mining, OLAP (2-e yzd., pererab. y dop.) [The Technology of Data Analysis: Data Mining, Visual Mining, Text Mining, OLAP], (2007), St.Petersburg, Russian Federation, BKHV, Petersburg, 384 p., (In Russian), ISBN 5-94157-991-8.
  8. Savchuk T.O., and Petrishyn S.I. Osoblyvosti vyboru parametriv klasteryzatsiyi pry analizi nadzvychaynykh sytuatsiy na zaliznychnomu transporti [Peculiarities of Choice of Parameters in the Analysis of the Clustering of Emergencies in Railway Transport], (2010), Vymiryuvalna ta Obchyslyuvalna Tekhnika v Tekhnolohichnykh Protsesakh, No. 2, pp. 144 – 149 (In Ukrainian).
  9. Petrishyn S.I. Osoblyvosti vyboru parametriv pry klaster-analizi problemnykh sytuatsiy ta yikh staniv v skladnykh tekhnichnykh systemakh [Peculiarities of Selecting Options in Cluster Analysis of Problem Situations and their States in Complex Technical Systems], (2010), Problemy Stiykosti ta Optymizatsiyi Dynamichnykh System Determinovanoyi ta Stokhastychnoyi Struktury: Tezy Mizhnarodnoyi Naukovoyi Konferentsiyi (17–21 zhovtnya 2010 rook, Chernovtsy), Chernovtsy, Ukraine, pp. 127 –128 (In Ukrainian).
Published:
Last download:
2017-11-17 00:36:55

[ © KarelWintersky ] [ All articles ] [ All authors ]
[ © Odessa National Polytechnic University, 2014. Any use of information from the site is possible only under the condition that the source link! ]
Яндекс.Метрика