Scientific and Technical Journal

ELECTROTECHNIC AND COMPUTER SYSTEMS

ISSN Print 2221-3937
ISSN Online 2221-3805
RESEARCH OF INTELLIGENT APPROACH IN THE COMPUTER NETWORKS ROUTING
Abstract:

The paper presents an analysis of the use of the intellectual approach to routing of computer networks. For a comparative analysis, we consider the classical approach based on graph theory, matrix algorithm for finding the shortest path from node to node and intellectual apparatus neuro-fuzzy networks. Advantages of predictive approach were shown by package MatLab, when we calculated the extrapolation of numerical values of the time delay between the network nodes. We noticed a complete similarity of the result obtained by the neural network, with the corresponding value in the table statistics of system administrator. The ability to predict the delay of the transmitted packets will allow the router to adapt to the expected changes in the parameters of the computer network and thereby enhance its performance when selecting an alternative route. Using this approach will allow to efficiently manage of data streams, considering variable load and variable topology of the network.

Authors:
Keywords
DOI
10.15276/etks.16.92.2014.13
References
1. Goldshteyn B.S. Protokoly seti dostupa. [Protocol Access Network], (1999), Moscow, Russian Federation, Radio and Communication, Vol. 2, 313 p. (In Russian).

2. Knyazeva N.A. Teoriya proektirovaniya kompyuternyih sistem i setey [The theory of Designof Computer Networks], (2012), Odessa, Ukraine, PE Brovkin O.V., 239 p. (In Ukrainian). 

3. Leonenko А.V. Nechetkoe modelirovanie v srede MATLAB i fuzzyTECH [Fuzzy ModelinginMatlab Environmentand FuzzyTech], (2005), Saint Pethersburg, Russian Federation, BHV-Petersburg, 736 p. (In Russian)

4. Mikhailenko V.S., Harchenko R.Yu. Sintez adaptivnogo nechetkogo regulyatora s prognoziruyuschey neyro-nechetkoy setyu [Synthesis of Adaptive Fuzzy Controller with Predictive neuro-fuzzy Network], 2012, Sammy, Ukraine, University Book, pp. 30 – 37. (In Russian)

5. Stollings V. Sovremennyie kompyuternyie seti [Modern Computer Networks], 2003, Saint Petersburg, Russian Federation, Piter, 783 p. (In Russian).

6. Syrtsev A.V., Timofeev A.V. Neyronnaya i multiagentnaya marshrutizatsiya v telekommunikatsionnyih setyah [Neural and Multi-agent Routing in Telecommunication Networks], (2003), Saint Petersburg, Russian Federation, International Journal “Information Theories and Their Applications” Vol. 10, No. 2, pp. 167 – 172. (In Russian).

7. Timofeev A.V. Adaptivnoe upravlenie i mnogoagentnaya obrabotka informatsionnyih potokov v integrirovannyih telekommunikatsionnyih i kompyuternyih setyah [Adaptive Management and multi-agent Processing of Information flows in Integrated Telecommunication and Computer Networks], (2006), Saint Petersburg, Russian Federation, Nauka, pp. 62 – 70 (In Russian)

8. Timofeev A.V. Metody vyisokokachestvennogo upravleniya, intellektualizatsii i funktsionalnoy diagnostiki avtomaticheskih sistem [Methods of high-quality Management, Intellectualization and Functional Diagnostics of Automatic Systems], (2003), Saint Petersburg, Russian Federation, Mechatronics, Automation, Control, No. 2. pp. 13 – 17 (In Russian).

9. Perepjolkin D.А. Metody i algoritmyi v korporativnyih vyichislitelnyih setyah [Methods and Algorithms for Adaptive Routing in Enterprise], (2009), (In Russian). Available at: http://www.dissercat.com/content/metody-i-algoritmy-adaptivnoi-marshrutizatsii-v-korporativnykh-vychislitelnykh-setyakh (accessed 16.12.2009). 

10. Коmissarov А.М. Adaptivnaya marshrutizatsiya v setyah peredachi dannyih s uchetom samopodobiya trafika. [Adaptive Routing in data Networks with the Self-Similar Traffic], (2011), (In Russian). Available at: http://sci-library.com/thesis/adaptivnaya-marshrutizatsiya-v-setyah-peredachi-dannyh-s-uchetom-samopodobiya-trafika. (Accessed 2.12.2011).

11. Berezka М. P. Metody i modeli adaptivnoy marshrutizatsii v setyah EVM :Na primere seti EVM “Ekspress-2”. [Methods and Models of Adaptive Routing in Computer Networks, “Express-2”], (2001), (In Russian). Available at: http://www.dissercat.com/content/metody-i-modeli-adaptivnoi-marshrutizatsii-v-setyakh-evm-na-primere-seti-evm-ekspress-2 (Accessed 2001).

12. Subramanian D., Druschel P., and Chen J., (2008), Ants and Reinforcement Learning: A Case Study in Routing in Dynamic Networks, Department of Computer Science Rice University, Houston, Texas 77005, 838 p. (In English) DOI: 10.1.1.52.2400. [20.04.2008]. URL:http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.99.479&rep=rep1&type=pdf

13. Floyd S., and Jacobson V., (2002), Random Early Detection Gateways for Congestion Avoidance, Lawrence Berkeley Laboratory, University of California, p.p. 397 – 413 (In English), ISSN:1063-6692. DOI: 10.1109/90.251892 [06.08.2002] URL:http://www.icir.org/floyd/papers/early.twocolumn.pdf.
Published:
Last download:
2017-11-24 12:05:22

[ © KarelWintersky ] [ All articles ] [ All authors ]
[ © Odessa National Polytechnic University, 2014. Any use of information from the site is possible only under the condition that the source link! ]
Яндекс.Метрика