Scientific and Technical Journal

ELECTROTECHNIC AND COMPUTER SYSTEMS

ISSN Print 2221-3937
ISSN Online 2221-3805
HARDWARE AND SOFTWARE SOLUTIONS OF CONTROL SYSTEM OF A DEEP-WELL PUMPING UNIT
Abstract:

Control system oftheelectricdriveofadeep-wellpumpingunit on the basis of ARM Cortex M3 STM32F107 microprocessor isproposed.The control algorithm was implemented relying on FreeRTOS open source software. The resulting control system makes it possible to carry out real-timecontrol of well condition and to detect emergency modes in a timely manner.The key elements of the control system are the neural network, database comprising input images and test patterns of dynamograms, algorithm for input image processing and job setup on the frequency converter.Basedonthehardwareandsoftwaresolutionsproposed, anexperimentalinstallationforstudyingtheoperationoftheoilpumpingunit, whichaccuratelyreproducessteady-stateperiodicalmodesoflowflowratewells, wascreated. The obtained experimental relationships confirm the feasibility of applying the proposed deep-wellpumpingunit control system at Ukrainian oil fields.

Authors:
Keywords
DOI
10.15276/etks.15.91.2014.37
References
  1. Shagaev А.F., Timusheva А.М., ShagaevaL.N., andGrishkin А.S.Avtomatizirovannyimonitoringprotsessovobrabotkiskvazhin – pervayastupenintellektualnykhsystemupravleniya [AutomatedMonitoringofWellboreProcessing–theFirstStageofIntelligentControlSystems], (2000),NeftyanoyeKhozyaystvo, No. 11,pp. 48–49 (In Russian).
  2. Andreishyn А.S. Rozpiznavannyastanusverdlovynytanaftovydobuvnohoobladnannyanaosnovineironnoimerezhi [Neural Network Based Recognition of Wells and Oil Producing Equipment Condition], (2013), “Elektromakhanichni і ElenerhozberihayuchiSystem. ShchokvartalnyiNaukovo-vyrobnychyiZhurnal,Kremenchuk, Ukraine, KrNU, No. 2/2013 (22), pp. 87 – 89 (In Ukrainian).
  3. Operating System FreeRTOS. – Available at:http://www.freertos.org. (In English)(accessed 2.06.2014).
  4. Malyar А.V., andAndreishyn А.S., Vykory-stannyaneiromerezhidlyapobudovysystemykeruvannyaelektropryvodomverstata-hoydalky [UsingNeuralNetworksforBuildingupaControlSystemfortheElectricDriveoftherodоil-pumpingunit], (2011), VisnykNULvivskaPolytekhnika” “ElektroenerhetychnitaElektromakhanichniSystemy, No. 707, pp. 77 – 82(InUkrainian).
  5. Web-Site of Manufacturer of Microcontrollers ST32. – Available at: http://www.st.com (In English) (accessed 25.05.2014)
  6. Aliev Т.А., and Nusratov О.K., Metodyisredstvadiagnostikyglubinnonasosnogooborudovaniyaneftyanykhskvazhin [Methods and Facilities for Diagnostics of Deep Well Oil Pumping Equipment], (1998),NeftyanoyeKhozyaystvo, No. 9,pp. 78 – 80(In Russian).
  7. Malyar А.V. Alhorytm rozrakhunku statsionarnykh rezhymiv elektropryvodu shtanhovykh naftovydobuvnykh ustanovok [An Algorithm for Calculating Stationary Operation Modes of the Electric Drive of the deep-well oil Pumping unit], (2009), Tekhnichna Elektrodynamika, No.4, pp. 40 – 44 (In Ukrainian).
  8. Мicrocontroller STM32. Available at:// microtechnics.ru/ mikrokontroller-stm32-i-usb(In English). (accessed 2.06.2014).
  9. BarskyiV.А., KurdyumovD.S., andKolesnik А.А. Opytprimineniyaavtomatizirovannogoreguliruemogoelektroprivodashtangovoyglubinno-nasosnoyustanovkiREN2Nvpolevykhusloviyakh[ExperienceofApplyingAutomatedAdjustableDriveforSuckerroddeep-wellPumpingunitРЭН2Н inFieldConditions], (2002), Vestn. NTU KhPI “Problemy AvtomatizirovannogoElektroprivoda. Teoriya i Praktika”, No. 12, part 1, pp. 206 – 209 (In Russian).
  10. Tagirova Klara Foatovna,(2008), Avtomatizatsiya upravleniya tekhnologicheskim processom dobichi nefti iz malodebitnykh skvazhin na osnove dinamicheskikh modeley [Automation of Control Process of oil Production from Marginal wells Based on Dynamic Models]: Аvtoreferat Dysert. Dokt. Techn. Nauk: Spec. 05.13.06, Ufa, Russian Federation, 35 p. (In Russian).
Published:
Last download:
2017-11-17 04:18:03

[ © KarelWintersky ] [ All articles ] [ All authors ]
[ © Odessa National Polytechnic University, 2014. Any use of information from the site is possible only under the condition that the source link! ]
Яндекс.Метрика