Scientific and Technical Journal

ELECTROTECHNIC AND COMPUTER SYSTEMS

ISSN Print 2221-3937
ISSN Online 2221-3805
SIGNAL RESTORATION BY MEANS OF BLIND DECONVOLUTION BASED ON MULTISTART OPTIMIZATION METHOD IN WAVELET TRANSFORM DOMAIN
Abstract:

In this paper, an analysis of existing methods of iterative blind deconvolution and the possibility oftheir usage for image processing is shown.

A large number of existing methods cannot guarantee the convergence to a global minimum, since they are based on the minimization of multimodal objective functions using gradient descent.

To improve their convergence multistart optimization method in wavelet transform domain (MOM in WT domain) is applied, cause it has reduced sensitivity to local extrema and the best rate of convergence for functions like "ravine".

The experiments demonstrate the ability of the new algorithm to reach the global minimum of the objective function for different initial conditions. This suggests to possible usage of MOM in WT domain for solving the blind deconvolution problem, for example, when processing distorted and blurry images.

Authors:
Keywords
DOI
10.15276/etks.13.89.2014.26
References
  1. Gonzalez R.C., Woods R.E., and Eddins,, S.L. (2004), Digital Image processing using MATLAB, Pearson Prentice Hall, Upper Saddle River, N.J., 620 p. (In English).
  2. Bellini S. (1986), Bussgang techniques for blind equalization, IEEE GLOBECOM Conf. Rec., pp. 1634 – 1640(In English).
  3. Haykin S. (1986), Adaptivefilter theory, Prentice-Hall, Englewood Cliffs, N.J., 704 p. (In English).
  4. Godard, D. (1980), Self-recovering Equalization and Carrier Tracking in Two-dimensional data Communication Systems, IEEE Transactions on Communications, No. 28(11), pp. 1867 – 1875(In English).
  5. Treichler J., and Agee B.,  (1983). A New Approach to Multipath Correction of Constant Modulus Signals, IEEE Transactions on Acoustics, Speech and Signal Processing, No. 31(2), pp. 459 – 472(In English). 
  6. Benveniste A., and Goursat M., (1983), Blind equalizers, IEEE Transactions on Communications, No. 32, pp. 871 – 883(In English).
  7. Godfrey R., and Rocca F. (1981), Zero Memory Nonlinear Deconvolution, Geophys. Prospecting, No. 29, pp. 189 – 228(In English).
  8. Shherbakova G., and Krylov V. (2010), Issledovanie shodimosti mul'tistartovogo subgradientnogo metoda optimizacii v prostranstve vejvlet preobrazovanija, [Convergence of MultistartSubgradient Method of Optimization in the Wavelet Transform Domain], Naukovі Pracі DonNTU. Serіja “Іnformatika, Kіbernetika ta Obchisljuval'na Tehnіka”,No. 12(165), pp. 162 – 168 (InRussian).
  9. Vural C., and Sethares W.A., (2006), Blind Image Deconvolution via Dispersion Minimization, Digital Signal Processing, No. 16(2), pp. 137 – 148(In English).
  10. Colonnese S., Campisi P., Panci G., and Scarano G. (2004), Blind Image Deblurring Driven by Nonlinear Processing in the edge Domain, EURASIP Journal on Advances in Signal Processing, No. 16, pp. 2462 – 2475(In English).
  11. Hatzinakos D., and Nikias C.L. (1991), Blind Equalization using a Tricepstrum-based Algorithm, IEEE Transactions on Communications, No. 39(5), pp. 669 – 682(In English).
  12. Ding Z., Kennedy R. A., Anderson B. D., and Johnson C.R. (1991), Ill-convergence of Godard blind Equalizers in data Communication Systems, IEEE Transactions on Communications, No. 39(9), pp. 1313 – 1327(In English).
  13. Ilow J., Hatzinakos D., and Venetsanopoulos A., (1994), Blind Equalizers with Simulated Annealing Optimization for Digital Communication Systems, International Journal of Adaptive Control and Signal Processing, No. 8(5), pp. 501 – 522(In English).
Published:
Last download:
2017-11-16 23:12:49

[ © KarelWintersky ] [ All articles ] [ All authors ]
[ © Odessa National Polytechnic University, 2014. Any use of information from the site is possible only under the condition that the source link! ]
Яндекс.Метрика