Scientific and Technical Journal

ELECTROTECHNIC AND COMPUTER SYSTEMS

ISSN Print 2221-3937
ISSN Online 2221-3805
MODEL OF CLONAL SELECTION FOR FORECASTING TIME SERIES WITH MISSING DATA
Abstract:

This paper proposes the hybrid method of short-term forecasting of time series with missing values, based on the model of clonal selection which uses heterogeneous antibodies. The method involves time-series segmentation and selection of the most appropriate forecasting method for each section. There is the usage of the case-based reasoning method, where antibodies perform the role of the cases.The antibodies contain samples of known values of the time series, including missing values, and its variant of the forecast for its sample. The creation of the antibodies use one of forecasting method set, depending on the amount of missing values in source sample. Antigen includes the known values of the sample immediately preceding of the predicting values. The problem is to select antibodies having the greatest affinity for the antigen. During the training of the model it is forming of the antibodies that are based on distinctive patterns describing thesetime series. The experimental results illustrate the features of the proposed approach for short-term forecasting of distorted time series. However increase in the number of missing values requires an increase in the training sample and increasing the size of antibodies.

Authors:
Keywords
DOI
10.15276/etks.13.89.2014.24
References
  1. Roderick J.A. Little, and Donald B. Rubin. Statistical Analysis with Missing Data. Wiley, New York 1987, 278 p. (InEnglish).
  2. SnityukV.E. Evolyutsionnyimetodvosstanovleniyapropuskovvdannykh [EvolutionaryMethodforReconstructingMissingdata]. (2006), Intellektual'nyiAnalizInformatsiiPubl., Kiev, Ukraine, pp. 4 – 8 (InRussian).
  3. LukashinYu.P. Adaptivnyemetodykratkosrochnogoprognozirovaniyavremennykhryadov [AdaptiveMethodsofShort-termTimeSeriesForecasting], (2003),UchebnoePosobie,Moskow, Russian Federation, 416 p. (In Russian).
  4. BaturoA.P., and  EremenkoN.M. Finansovyevremennyeryady: kusochnoeprog-nozirovanieiproblemaobnaruzheniyapred-vestnikovsushchestvuyushchegoizmeneniyazakonomernosti [FinancialTimeSeries: aPiecewiseForecastingandProblemDetectionPrecursorsChangeExistingLaws], (2001), BankovskieTekhnologii., Vol. 12, pp. 70 – 77 (InRussian).
  5. Dasgupta D. Artificial Immune Systems and Their Applications, Springer–Verlag, 1999 (InEnglish).
  6. PrasolovS.V., ShoitovD.V. Postanovkazadachiprognozirovaniya, osnovannayanaprimeneniiuproshchennoimodeliiskusstvennoiimmunnoiseti [FormulationoftheProblemofForecastingBasedontheSimplifiedModelofArtificialImmuneNetwork], (2009),UchenyeZapiski. ElektronnyiNauchnyiZhurnalKurskogoGosudarstvennogoUniversiteta Publ.,pp. 1 – 3 (In Russian).
  7. BidyukP.I., LitvinenkoV.I., BaklanI.V., andFefelovA.A. Algoritmklonal'nogootboradlyaprognozirovaniyanestatsionarnykhdinamicheskikhsistem [ClonalSelectionAlgorithmforthePredictionofNonstationaryDynamicalSystems], (2004), IskusstvennyiIntellektPubl., Vol. 4, pp. 89 – 99 (In Russian).
  8. KorablevN.M., andIvashchenkoG.S. Primenenieiskusstvennykhimmunnykhseteidlyaprognozirovaniyavremennykhryadov [ApplicationofArtificialImmuneNetworksforTimeSeriesForecasting], (2012), SistemiObrobkiInformatsії Publ., Kharkov, Ukraine, pp. 42 – 45 (In Russian).
  9. Korablev N.M., and Ivashchenko G.S. Primenenie modeli klonal'nogo otbora, ispol'zuyushchei vyvod po pretsedentam, dlya prognozirovaniya vremennykh ryadov [Application of the Clonal Selection Model Using Case Based Reasoning for Time Series Forecasting], (2013), Bionika Intellekta Publ, Kharkov, Ukraine, Vol. 1(80), pp. 42 – 45 (In Russian).
  10. Korablev N.M., and Ivashchenko G.S. Primenenie raznorodnykh antitel v modeli klonal'nogo otbora dlya resheniya zadachi kratkosrochnogo prognozirovaniya [Application of Heterogeneous Antibody in the Clonal Selection Model for Solving the Problem of Short-term Forecasting], (2013), Intellektual'nye sistemy Prinyatiya Reshenii i Problemy Vychislitel'nogo Intellekta Publ., Kherson, Ukraine, pp. 454 – 456 (In Russian).
  11. Chernyi S.G. Primenenie case based reasoning dlya podderzhki prinyatiya reshenii [Application of Case Based Reasoning for Decision Making Support], (2010), Vestnik KhNTU Publ., Ukraine, Vol. 2(38), pp. 336 – 342 (In Russian).
  12. Chuchueva I.A. Model' ekstrapolyatsii vremennykh ryadov po vyborke maksimal'nogo podobiya [Model Extrapolation of Time Series Based on a Sample of Maximum Similarity], (2010), Informatsionnye tekhnologii Publ., Moskow, Russian Federation, No. 12. pp. 43 – 47 (In Russian).
  13. Makridakis S. The M-3 Competition: Results, Conclusions and Implications. International of Forecasting, (2000), No. 16. pp. 451 – 476 (InEnglish). 
Published:
Last download:
2017-11-16 11:36:46

[ © KarelWintersky ] [ All articles ] [ All authors ]
[ © Odessa National Polytechnic University, 2014. Any use of information from the site is possible only under the condition that the source link! ]
Яндекс.Метрика